题目内容

设集合A={x|x2-4x<0},集合B={x|0<x<3},则“m∈A”是“m∈B”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:结合不等式的性质,利用充分条件和必要条件的定义进行判断.
解答: 解:A={x|x2-4x<0}={x|0<x<4},
∵B={x|0<x<3},
∴B?A,
即“m∈A”是“m∈B”的必要不充分条件,
故选:B.
点评:本题主要考查充分条件和必要条件的判断,利用不等式的解法是解决本题的关键,比较基础.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网