题目内容


某省高中学校自实施素质教育以来,学生社团得到迅猛发展,某校高一新生中的五名同学打算参加“春晖文学社”、“舞者轮滑俱乐部”、“篮球之家”、“围棋苑”四个社团.若每个社团至少有一名同学参加,每名同学至少参加一个社团且只能参加一个社团.且其中甲不参加“围棋苑”,则不同的参加方法的种数为(  )

A.72                                                           B.108 

C.180                                                          D.216


C

[解析] 设五名同学分别为甲、乙、丙、丁、戊,由题意,如果甲不参加“围棋苑”,有下列两种情况:

(1)从乙、丙、丁、戊中选一人(如乙)参加“围棋苑”,有C种方法,然后从甲与丙、丁、戊共4人中选2人(如丙、丁)并成一组与甲、戊分配到其他三个社团中,有CA种方法,故共有CCA种参加方法;

(2)从乙、丙、丁、戊中选2人(如乙、丙)参加“围棋苑”,有C种方法,甲与丁、戊分配到其他三个社团中有A种方法,这时共有CA种参加方法;

综合(1)(2),共有CCA+CA=180种参加方法.

[解法探究] 由于甲是特殊元素,故按甲进行分类.

第一类,甲自己去一个社团,有C种选法,将其余4人中选2人有C种选法,将这2人和其余2人分派到三个社团共有A种方法,∴共有CCA=108种.

第二类,甲与另外一人同去一个社团,先安排甲有C种选法,然后将剩余4人分派到四个社团有A种,∴共有CA=72种,∴总共有108+72=180种参加方法.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网