题目内容

下列命题中:
①?x∈R,x2-x+
1
4
≥0;
②?x∈R,x2+2x+2<0;
③函数y=2-x是单调递增函数.
真命题的个数是(  )
A.0B.1C.2D.3
①因为x2-x+
1
4
=(x-
1
2
)
2
≥0
恒成立,所以①为真命题.
②因为x2+2x+2=(x+1)2+1≥1,所以不存在x∈R,x2+2x+2<0,所以②为假命题.
③因为y=2-x=(
1
2
)
x
,所以函数y=2-x是单调递减函数,所以③为假命题.所以真命题的个数为1个.
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网