题目内容

12.已知等比数列{an}的前n项和为Sn,若S6=$\frac{21}{2}$,公比q=-$\frac{1}{2}$.
(1)求数列{an}的通项公式;
(2)求和:a12+a22+a32+…+an2

分析 (1)根据求和公式列方程解出a1即可得出an
(2)证明{an2}是等比数列,代入求和公式计算.

解答 解:(1)∵S6=$\frac{21}{2}$,公比q=-$\frac{1}{2}$.
∴$\frac{{a}_{1}(1-(-\frac{1}{2})^{6})}{1-(-\frac{1}{2})}$=$\frac{21}{2}$,解得a1=16.
∴an=16•(-$\frac{1}{2}$)n-1=(-1)n-1•25-n
(2)设bn=an2,则$\frac{{b}_{n+1}}{{b}_{n}}$=$\frac{{{a}_{n+1}}^{2}}{{{a}_{n}}^{2}}$=(-$\frac{1}{2}$)2=$\frac{1}{4}$.
∴{bn}是以162为首项,以$\frac{1}{4}$为公比的等比数列,
∴a12+a22+a32+…+an2=$\frac{1{6}^{2}(1-\frac{1}{{4}^{n-1}})}{1-\frac{1}{4}}$=$\frac{{4}^{5}}{3}$(1-$\frac{1}{{4}^{n-1}}$).

点评 本题考查了等比数列的判断,求和公式和通项公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网