题目内容

14.如图,为测得对岸塔AB的高,先在河岸上选一点C,使C在塔底B的正东方向上,测得点A的仰角为60°,再由点C沿北偏东方向是15°方向走30m到位置D,测得∠BDC=30°,则塔高是(  )
A.15mB.5$\sqrt{6}$mC.10$\sqrt{6}$mD.15$\sqrt{6}$m

分析 先在△ABC中求出BC,再△BCD中利用正弦定理,即可求得结论.

解答 解:设塔高AB为x米,根据题意可知
在△ABC中,∠ABC=90°,∠ACB=60°,AB=x,从而有BC=$\frac{\sqrt{3}}{3}$x,AC=$\frac{2\sqrt{3}}{3}$x
在△BCD中,CD=30,∠BCD=105°,∠BDC=30°,∠CBD=45°
由正弦定理可得BC=$\frac{30sin30°}{sin45°}$=15$\sqrt{2}$
∴$\frac{\sqrt{3}}{3}$x=15$\sqrt{2}$
∴x=15$\sqrt{6}$
故塔高AB为15$\sqrt{6}$m
故选:D.

点评 本题考查了正弦定理在实际问题中的应用,解决本题的关键是要把实际问题转化为数学问题,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网