题目内容
2.已知等比数列{an}的前n项和为Sn,a1=$\frac{1}{2}$,公比q>0,S1+a1,S3+a3,S2+a2成等差数列.(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+2}}$,求数列{bn}的前n项和Tn.
分析 (1)利用等差数列与等比数列的通项公式即可得出;
(2)bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+2}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,利用“裂项求和”即可得出.
解答 解:(1)∵S1+a1,S3+a3,S2+a2成等差数列,
∴2(S3+a3)=S2+a2+S1+a1,
∴$2{a}_{1}(1+q+2{q}^{2})$=a1(3+2q),
化为q2=$\frac{1}{4}$,q>0.
解得q=$\frac{1}{2}$.
∴an=$(\frac{1}{2})^{n}$.
(2)bn=$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+2}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
∴数列{bn}的前n项和Tn=$\frac{1}{2}[(1-\frac{1}{3})$+$(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.
点评 本题考查了等差数列与等比数列的通项公式、“裂项求和”、对数的运算性质,考查了推理能力与计算能力,属于中档题.
| A. | y=tan2x | B. | y=sinx | C. | y=cos2x | D. | y=sin2x |
| A. | 0 | B. | -4 | C. | -8 | D. | 4 |
| A. | 0<d<1 | B. | 0<d≤1 | C. | 0≤d<1 | D. | 0≤d≤1 |