题目内容

11.若x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x-2≤0\\ x+y-2≥0\end{array}\right.$,则$z=\frac{y}{x}$的最大值为3.

分析 由约束条件作出可行域,再由$z=\frac{y}{x}$的几何意义,即可行域内的动点与原点连线的斜率求解.

解答 解:由约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x-2≤0\\ x+y-2≥0\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x-y+1=0}\\{x+y-2=0}\end{array}\right.$,解得A($\frac{1}{2}$,$\frac{3}{2}$).
$z=\frac{y}{x}$的几何意义为可行域内的动点与原点连线的斜率,
则$z=\frac{y}{x}$的最大值为$\frac{\frac{3}{2}}{\frac{1}{2}}=3$.
故答案为:3.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网