题目内容

15.如图所示,E是正方形ABCD所在平面外一点,E在面ABCD上的正投影F恰在AC上,FG∥BC,AB=AE=2,∠EAB=60°,有以下四个命题:
(1)CD⊥面GEF;
(2)AG=1;
(3)以AC,AE作为邻边的平行四边形面积是8;
(4)∠EAD=60°.
其中正确命题的个数为(  )
A.1B.2C.3D.4

分析 连结EG,通过证明AB⊥平面EFG得出CD⊥平面EFG,在直角三角形AEG中求出AG,EF,求出三角形ACE的面积,根据AG判断出F的位置,利用全都三角形判断∠EAD.

解答 解:连结EG,
(1)∵EF⊥平面ABCD,AB?平面ABCD,
∴EF⊥AB,
∵FG∥BC,BC⊥AB,
∴AB⊥FG,
又EF?平面EFG,FG?平面EFG,EF∩FG=F,
∴AB⊥平面EFG,∵AB∥CD,
∴CD⊥平面EFG.故(1)正确.
(2)∵AB⊥平面EFG,
∴AB⊥EG,∵∠EAB=60°,AE=2,
∴AG=$\frac{1}{2}$AE=1,故(2)正确.
(3))∵AG=1=$\frac{1}{2}AB$,∴F为AC的中点.
∵AE=2,AC=$\sqrt{2}AB$=2$\sqrt{2}$,AF=$\frac{1}{2}AC$=$\sqrt{2}$,
∴EF=$\sqrt{A{E}^{2}-A{F}^{2}}$=$\sqrt{2}$.
∴S△ACE=$\frac{1}{2}AC•EF$=$\frac{1}{2}×2\sqrt{2}×\sqrt{2}$=2,
∴以AC,AE作为邻边的平行四边形面积为2S△ACE=4,故(3)错误;
(4)过F作FM⊥AD于M,则AM=1,
由(1)的证明可知AD⊥平面EFM,故而AD⊥EM,
∴Rt△EAG≌Rt△EAM,
∴∠EAM=∠EAG=60°,故(4)正确.
故选:C

点评 本题考查了线面垂直的判定与性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网