题目内容

20.甲、乙、丙三位同学将独立参加英语听力测试,根据平时训练的经验,甲、乙、丙三人能达标的概率分
别为P、$\frac{2}{3}$、$\frac{3}{5}$,若将三人中有人达标但没有全部达标的概率为$\frac{2}{3}$,则P等于(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{5}{6}$

分析 三人中有人达标但没有全部达标的对立事件是“3人都达标或全部都没有达标”,由此能求出结果.

解答 解:三人中有人达标但没有全部达标的对立事件是“3人都达标或全部都没有达标”,
∵甲、乙、丙三人能达标的概率分别为P、$\frac{2}{3}$、$\frac{3}{5}$,
三人中有人达标但没有全部达标的概率为$\frac{2}{3}$,
∴$\frac{2}{3}×\frac{3}{5}p+\frac{1}{3}×\frac{2}{5}(1-p)=1-\frac{2}{3}$,
解得p=$\frac{3}{4}$.
故选:B.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网