题目内容
20.甲、乙、丙三位同学将独立参加英语听力测试,根据平时训练的经验,甲、乙、丙三人能达标的概率分别为P、$\frac{2}{3}$、$\frac{3}{5}$,若将三人中有人达标但没有全部达标的概率为$\frac{2}{3}$,则P等于( )
| A. | $\frac{2}{3}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{6}$ |
分析 三人中有人达标但没有全部达标的对立事件是“3人都达标或全部都没有达标”,由此能求出结果.
解答 解:三人中有人达标但没有全部达标的对立事件是“3人都达标或全部都没有达标”,
∵甲、乙、丙三人能达标的概率分别为P、$\frac{2}{3}$、$\frac{3}{5}$,
三人中有人达标但没有全部达标的概率为$\frac{2}{3}$,
∴$\frac{2}{3}×\frac{3}{5}p+\frac{1}{3}×\frac{2}{5}(1-p)=1-\frac{2}{3}$,
解得p=$\frac{3}{4}$.
故选:B.
点评 本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.
练习册系列答案
相关题目
10.函数y=$\frac{\sqrt{x}}{{x}^{2}-1}$的定义域是( )
| A. | {x|x≥0或x≠1} | B. | {x|x≥0或 x≠±1} | C. | {x|x≥且x≠1} | D. | {x|x≥0且x≠1} |
15.已知集合A={x|x2-4x-12<0},B={x|2x>log${\;}_{\sqrt{3}}$3},则A∩B等于( )
| A. | ($\frac{3}{2},6$) | B. | ($\frac{3}{2},2$) | C. | (1,6) | D. | (1,2) |
5.为推行“新课堂”教学法,某化学老师分别用原传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如图.记成绩不低于70分者为“成绩优良”.
(1)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.025的前提下认为“成
绩优良与教学方式有关”?
附:${K}^{2}=\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$.(n=a+b+c+d)
独立性检验临界表
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法来抽取8人进行考核,在这8 人中,记成绩不优良的乙班人数为X,求X的分布列及数学期望.
| 分数 | [50,59) | [60,69) | [70,79) | [80,89) | [90,100) |
| 甲班频数 | 5 | 6 | 4 | 4 | 1 |
| 乙班频数 | 1 | 3 | 6 | 5 | 5 |
绩优良与教学方式有关”?
| 甲班 | 乙班 | 总计 | |
| 成绩优良 | |||
| 成绩不优良 | |||
| 总计 |
独立性检验临界表
| P(K2≥0) | 0.10 | 0.05 | 0.025 | 0.010 |
| K0 | 2.706 | 3.841 | 5.024 | 6.635 |
12.在△ABC中,内角A,B,C的对边分别是a,b,c,若bsinB-asinA=$\frac{3}{2}asinC$,且△ABC的面积为a2sinB,则cosB等于( )
| A. | $\frac{2}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |