题目内容

20.若tanθ=$\sqrt{3}$,则$\frac{sin2θ}{1+cos2θ}$=$\sqrt{3}$.

分析 原式利用二倍角的正弦、余弦函数公式化简,将已知等式代入计算即可求出值.

解答 解:∵tanθ=$\sqrt{3}$,
∴原式=$\frac{2sinθcosθ}{co{s}^{2}θ+si{n}^{2}θ+co{s}^{2}θ-si{n}^{2}θ}$=$\frac{2sinθcosθ}{2co{s}^{2}θ}$=tanθ=$\sqrt{3}$,
故答案为:$\sqrt{3}$.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网