题目内容

18.设函数f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在区间[$\frac{π}{6}$,$\frac{π}{2}$]上单调,且f($\frac{π}{2}$)=f($\frac{2π}{3}$)=-f($\frac{π}{6}$),则f(x)的最小正周期为  (  )
A.$\frac{π}{2}$B.C.D.π

分析 由题意求得x=$\frac{7π}{12}$,为f(x)=sin(ωx+φ)的一条对称轴,($\frac{π}{3}$,0)为f(x)=sin(ωx+φ)的一个对称中心,根据$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$,解得ω的值.

解答 解:∵函数f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在区间[$\frac{π}{6}$,$\frac{π}{2}$]上单调,
∴$\frac{π}{2}$-$\frac{π}{6}$≤$\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=$\frac{π}{ω}$,即$\frac{π}{3}$≤$\frac{π}{ω}$,∴0<ω≤3.
∵f($\frac{π}{2}$)=f($\frac{2π}{3}$)=-f($\frac{π}{6}$),
∴x=$\frac{\frac{π}{2}+\frac{2π}{3}}{2}$=$\frac{7π}{12}$,为f(x)=sin(ωx+φ)的一条对称轴,
且($\frac{\frac{π}{6}+\frac{π}{2}}{2}$,0)即($\frac{π}{3}$,0)为f(x)=sin(ωx+φ)的一个对称中心,
∴$\frac{T}{4}$=$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,解得ω=2∈(0,3],∴T=$\frac{2π}{2}$=π,
故选:D.

点评 本题考查三角函数的周期性及其求法,确定x=$\frac{7π}{12}$与($\frac{π}{3}$,0)为同一周期里面相邻的对称轴与对称中心是关键,也是难点,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网