题目内容

12.直线l过点P(-2,0)且倾斜角为1500,以直角坐标系的原点为极点,x轴正方向为极轴建立极坐标系,曲线C的极坐标方程为ρ2-2ρcosθ=15.
(1)写出直线l的参数方程和曲线C的直角坐标方程;
(2)直线l交曲线C于A,B两点,求|PA|+|PB|的值.

分析 (1)直线l过点P(-2,0)且倾斜角为150°,利用斜率计算公式及其同角三角函数基本关系式即可得出可得l的参数方程.由曲线C的极坐标方程为ρ2-2ρcosθ=15,利用$\left\{\begin{array}{l}{{ρ}^{2}={x}^{2}+{y}^{2}}\\{x=ρcosθ}\end{array}\right.$即可得出直角坐标方程.
(2)把l的参数方程代入C得:${t^2}+3\sqrt{3}t-7=0$,设A,B对应参数t1,t2,利用|PA|+|PB|=|t1|+|t2|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$,即可得出.

解答 解:(1)直线l过点P(-2,0)且倾斜角为150°,即斜率为tan150°=$\frac{sin15{0}^{°}}{cos15{0}^{°}}$=$\frac{\frac{1}{2}}{-\frac{\sqrt{3}}{2}}$,
可得l的参数方程为:$\left\{{\begin{array}{l}{x=-2-\frac{{\sqrt{3}}}{2}t}\\{y=\frac{1}{2}t}\end{array}(t}\right.$为参数).
∵曲线C的极坐标方程为ρ2-2ρcosθ=15,
∴直角坐标方程C为:x2+y2-2x-15=0.
(2)把l的参数方程代入C得:${t^2}+3\sqrt{3}t-7=0$,
设A,B对应参数t1,t2
则${t_1}+{t_2}=-3\sqrt{3},{t_1}•t{\;}_2=-7$,
∴|PA|+|PB|=|t1|+|t2|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(-3\sqrt{3})^{2}-4×(-7)}$=$\sqrt{55}$.

点评 本题考查了极坐标化为直角坐标方程的方法、直线参数方程的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目
7.如图1,在平面直角坐标系xOy中,椭圆E的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,A,B为椭圆的左右顶点,F1、F2是左、右焦点.
(1)已知椭圆内有一点P(1,-1),在椭圆上有一动点M,则求|MP|+|MF2|的最大值和最小值分别是多少?
(2)如图1,若直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M,设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.
(3)如图2,若直线l过左焦点F1交椭圆于A,B两点,直线MA,MB分别交直线x=-4于C,D两点,求证:以线段CD为直径的圆恒过两个定点.
(4)如图3,若M,N是椭圆E上关于原点对称的两点,点P是椭圆上除M,N外的任意一点,当直线PM,PN的斜率都存在,并记为kPM,kPN为定值.
(5)如图4,若动直线l:y=kx+m与椭圆E有且只有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2面积S的最大值.
(6)如图5,若过点F2且与坐标轴不垂直的直线交椭圆于P,Q两点.试探究:线段OF2上是否存在点M(m,0)使得$\overrightarrow{QP}•\overrightarrow{MP}=\overrightarrow{PQ}•\overrightarrow{MQ}$,若存在,求出实数的取值范围,若不存在,说明理由.
(7)如图6,若点P为抛物线D:y2=4x上的动点,设O为坐标原点,是否存在同时满足下列两个条件的△APM?①点M在椭圆C上;②点O为△APM的重心,若存在,求出点P的坐标,若不存在,说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网