题目内容

12.已知tanα-$\frac{1}{cosα}$=-$\sqrt{3}$,则$\frac{cosα}{sinα+1}$的值为(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.$\sqrt{2}$D.-$\sqrt{2}$

分析 利用同角三角函数的基本关系式,直接求解即可.

解答 解:tanα-$\frac{1}{cosα}$=-$\sqrt{3}$,则sinα-1=-$\sqrt{3}$cosα,
∵sin2α+cos2α=1,
∴(1-$\sqrt{3}$cosα)2+cos2α=1,
解得cosα=$\frac{\sqrt{3}}{2}$,
∴sinα=-$\frac{1}{2}$,
∴$\frac{cosα}{sinα+1}$=$\sqrt{3}$.
故选:A.

点评 本题考查三角函数的值的求法,同角三角函数的基本关系式的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网