题目内容

16.(1)计算:${[(1+2i)•{i^{100}}+{(\frac{1-i}{1+i})^5}]^2}-{(\frac{1+i}{{\sqrt{2}}})^{20}}$
(2)已知z,w为复数,(1+3i)•z为纯虚数,$w=\frac{z}{2+i}$,且$|w|=5\sqrt{2}$,求复数z.

分析 (1)直接由复数代数形式的乘除运算化简计算得答案.
(2)设z=x+yi,(x,y∈R),由题意可得$\left\{\begin{array}{l}{x-3y=0}\\{3x+y≠0}\end{array}\right.$,由$|ω|=|\frac{z}{2+i}|=5\sqrt{2}$,得$|z|=\sqrt{{x}^{2}+{y}^{2}}=5\sqrt{10}$,联立可解x,y的值.

解答 解:(1)${[(1+2i)•{i^{100}}+{(\frac{1-i}{1+i})^5}]^2}-{(\frac{1+i}{{\sqrt{2}}})^{20}}$
=[(1+2i)•1+(-i)5]2-i10
=(1+i)2-i10=1+2i.
(2)设z=x+yi,(x,y∈R),
则(1+3i)•z=(x-3y)+(3x+y)i为纯虚数,
∴$\left\{\begin{array}{l}{x-3y=0}\\{3x+y≠0}\end{array}\right.$,
∵$|ω|=|\frac{z}{2+i}|=5\sqrt{2}$,
∴$|z|=\sqrt{{x}^{2}+{y}^{2}}=5\sqrt{10}$.
又x=3y,解得x=15,y=5或x=-15,y=-5,
∴z=15+5i或z=-15-5i.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网