题目内容
在等差数列{an},等比数列{bn}中,a1=b1=1,a2=b2,a4=b3≠b4.
(Ⅰ)求anbn;
(Ⅱ)设Sn为数列{an}的前n项和,cn=
(n∈N*),Rn=c1+c2+…+cn,求Rn.
(Ⅰ)求anbn;
(Ⅱ)设Sn为数列{an}的前n项和,cn=
| anbn | Sn+1 |
分析:(Ⅰ)依题意,通过解方程组
可求得q与d,从而可求得anbn;
(Ⅱ)依题意,可求得Sn=
;再利用裂项法可求得cn=
•2n+1-
•2n,从而累加即可求得Rn.
|
(Ⅱ)依题意,可求得Sn=
| n(n+1) |
| 2 |
| 1 |
| n+2 |
| 1 |
| n+1 |
解答:解:(Ⅰ)∵等差数列{an},等比数列{bn}中,a1=b1=1,a2=b2,a4=b3≠b4,
∴
,解得
,
∴an=n,bn=2n-1,
∴anbn=n•2n-1.
(Ⅱ)∵an=n,
∴Sn=
;
∴cn=
=
=
=(
-
)•2n+1=
•2n+1-
•2n,
∴Rn=c1+c2+…+cn
=(
•22-
•2)+(
•23-
•22)+(
•24-
•23)+…+(
•2n+1-
•2n)=
-1.
∴
|
|
∴an=n,bn=2n-1,
∴anbn=n•2n-1.
(Ⅱ)∵an=n,
∴Sn=
| n(n+1) |
| 2 |
∴cn=
| anbn |
| Sn+1 |
| n•2n |
| (n+1)(n+2) |
| n•2n+1 |
| (2n+2)(n+2) |
| 1 |
| n+2 |
| 1 |
| 2n+2 |
| 1 |
| n+2 |
| 1 |
| n+1 |
∴Rn=c1+c2+…+cn
=(
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| n+2 |
| 1 |
| n+1 |
| 2n+1 |
| n+2 |
点评:本题考查数列的求和,着重考查等差数列与等比数列的通项公式,突出裂项法的考查,属于中档题.
练习册系列答案
相关题目