题目内容
在等差数列{an}中,a2+a3=7,a4+a5+a6=18.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求
+
+…+
.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求
| 1 |
| S3 |
| 1 |
| S6 |
| 1 |
| S3n |
分析:(1)由等差数列{an}中的a2+a3=7,a4+a5+a6=18,即可求得其首项与公差,从而可得数列{an}的通项公式;
(2)可先求得S3n,再用裂项法即可求得答案.
(2)可先求得S3n,再用裂项法即可求得答案.
解答:解:(1)设等差数列{an}的公差为d,依题意,
,解得a1=2,d=1,
∴an=2+(n-1)×1=n+1…5′
(2)S3n=
=
=
,
∴
=
=
(
-
)…9′
∴
+
+…+
=
[(1-
)+(
-
)+…+(
-
)]=
…12′
|
∴an=2+(n-1)×1=n+1…5′
(2)S3n=
| 3n(a1+a3n) |
| 2 |
| 3n(2+3n+1) |
| 2 |
| 9n(n+1) |
| 2 |
∴
| 1 |
| S3n |
| 2 |
| 9n(n+1) |
| 2 |
| 9 |
| 1 |
| n |
| 1 |
| n+1 |
∴
| 1 |
| S3 |
| 1 |
| S6 |
| 1 |
| S3n |
| 2 |
| 9 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 2n |
| 9(n+1) |
点评:本题考查数列的求和,考查等差数列的通项公式与求和公式,考查裂项法,考查转化与分析运算的能力,属于中档题.
练习册系列答案
相关题目