题目内容

6.已知等差数列{an}中,a2=6,a5=12.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{4}{{{a_n}•{a_{n+1}}}}$,求数列{bn}的前n项和Sn的值.

分析 (1)利用等差数列的通项公式即可得出.
(2)利用“裂项求和”方法即可得出.

解答 解:设{an}的首项为a1,公差为d,则由a2=6,a5=12,得3d=a5-a2=6,解得d=2.
∴a1=a2-d=6-2=4,
∴an=a1+(n-1)d=4+2(n-1)=2n+2,
即数列{an}的通项公式为an=2n+2.
(Ⅱ)依题意有${b_n}=\frac{4}{{{a_n}•{a_{n+1}}}}=\frac{4}{(2n+2)•[2(n+1)+2]}=\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}-\frac{1}{n+2}$,
∴${S_n}={b_1}+{b_2}+…+{b_n}=(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+…+(\frac{1}{n+1}+\frac{1}{n+2})$=$\frac{1}{2}-\frac{1}{n+2}=\frac{n}{2n+4}$.

点评 本题考查了等差数列的通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网