ÌâÄ¿ÄÚÈÝ
7£®¢Ùij°à¼¶Ò»¹²ÓÐ52ÃûѧÉú£¬ÏÖ½«¸Ã°àѧÉúËæ»ú±àºÅ£¬ÓÃϵͳ³éÑùµÄ·½·¨³éȡһ¸öÈÝÁ¿Îª4µÄÑù±¾£¬ÒÑÖª7ºÅ£¬33ºÅ£¬46ºÅͬѧÔÚÑù±¾ÖУ¬ÄÇôÑù±¾ÁíһλͬѧµÄ±àºÅΪ23£»
¢ÚÒ»×éÊý¾Ý1¡¢2¡¢3¡¢3¡¢4¡¢5µÄƽ¾ùÊý¡¢ÖÚÊý¡¢ÖÐλÊýÏàͬ£»
¢ÛÒ»×éÊý¾Ýa¡¢0¡¢1¡¢2¡¢3£¬Èô¸Ã×éÊý¾ÝµÄƽ¾ùֵΪ1£¬ÔòÑù±¾±ê×¼²îΪ2£»
¢Ü¸ù¾Ý¾ßÓÐÏßÐÔÏà¹Ø¹ØÏµµÄÁ½¸ö±äÁ¿µÄͳ¼ÆÊý¾ÝËùµÃµÄ»Ø¹éÖ±Ïß·½³ÌΪ$\widehat{y}$=bx+aÖÐa=2£¬$\overline{x}$=1£¬$\overline{y}$=3£¬Ôòb=1£»
¢ÝÈçͼÊǸù¾Ý³éÑù¼ì²âºóµÃ³öµÄ²úÆ·Ñù±¾¾»ÖØ£¨µ¥Î»£º¿Ë£©Êý¾Ý»æÖÆµÄÆµÂÊ·Ö²¼Ö±·½Í¼£¬ÒÑÖªÑù±¾ÖвúÆ·¾»ÖØÐ¡ÓÚ100¿ËµÄ¸öÊýÊÇ36£¬ÔòÑù±¾Öо»ÖØ´óÓÚ»òµÈÓÚ98¿Ë£¬²¢ÇÒСÓÚ104¿ËµÄ²úÆ·µÄ¸öÊýÊÇ90£®
ÆäÖÐÕæÃüÌâΪ£¨¡¡¡¡£©
| A£® | ¢Ù¢Ú¢Ü | B£® | ¢Ú¢Ü¢Ý | C£® | ¢Ú¢Û¢Ü | D£® | ¢Û¢Ü¢Ý |
·ÖÎö ÔÚ¢ÙÖУ¬ÓÉϵͳ³éÑùµÄÔÀíÖªÑù±¾ÁíһλͬѧµÄ±àºÅΪ20£»ÔÚ¢ÚÖУ¬Çó³öÊý¾ÝµÄƽ¾ùÊý¡¢ÖÐλÊý¡¢ÖÚÊýÄÜÅÐ¶Ï¶Ô´í£»ÔÚ¢ÛÖУ¬Çó³öÑù±¾µÄƽ¾ùÖµ¡¢Ñù±¾µÄ·½²î¡¢±ê×¼²î£¬ÄÜÅÐ¶Ï¶Ô´í£»ÔÚ¢ÜÖУ¬°Ñ£¨1£¬3£©´úÈë»Ø¹éÖ±Ïß·½³Ì£¬ÄÜÅÐ¶Ï¶Ô´í£»¢ÝÉèÑù±¾ÈÝÁ¿Îªn£¬Ôò$\frac{36}{n}$=0.300£¬Ôòn=120£¬ÓÉ´ËÄÜÇó³ö½á¹û£®
½â´ð ½â£ºÔÚ¢ÙÖУ¬ÓÉϵͳ³éÑùµÄÔÀíÖª³éÑùµÄ¼ä¸ôΪ52¡Â4=13£¬
¹Ê³éÈ¡µÄÑù±¾µÄ±àºÅ·Ö±ðΪ7£¬7+13£¬7+13¡Á2£¬7+13¡Á3£¬
¼´7ºÅ¡¢20ºÅ¡¢33ºÅ¡¢46ºÅ£¬¹Ê¢ÙÊǼÙÃüÌ⣻
ÔÚ¢ÚÖУ¬Êý¾Ý1£¬2£¬3£¬3£¬4£¬5µÄƽ¾ùÊýΪ$\frac{1}{6}$£¨1+2+3+4+5£©=3£¬
ÖÐλÊýΪ3£¬ÖÚÊýΪ3£¬¶¼Ïàͬ£¬¹Ê¢ÚÊÇÕæÃüÌ⣻
ÔÚ¢ÛÖУ¬ÓÉÌâ¿ÉÖªÑù±¾µÄƽ¾ùֵΪ1£¬ËùÒÔa+0+1+2+3=5£¬½âµÃa=-1£¬
¹ÊÑù±¾µÄ·½²îΪ$\frac{1}{5}[£¨-1-1£©^{2}+£¨0-1£©^{2}+£¨1-1£©^{2}+£¨2-1£©^{2}+£¨3-1£©^{2}]=2$£¬±ê×¼²îΪ$\sqrt{2}$£¬¹Ê¢ÛÊǼÙÃüÌ⣻
ÔÚ¢ÜÖУ¬»Ø¹éÖ±Ïß·½³ÌΪ$\widehat{y}$=bx+2µÄÖ±Ïß¹ýµã£¨$\overline{x}£¬\overline{y}$£©£¬
°Ñ£¨1£¬3£©´úÈë»Ø¹éÖ±Ïß·½³Ì$\widehat{y}$=bx+2£¬µÃb=1£¬¹Ê¢ÜÊÇÕæÃüÌ⣻
¢Ý²úÆ·¾»ÖØÐ¡ÓÚ100¿ËµÄƵÂÊΪ£¨0.050+0.100£©¡Á2=0.300£¬
ÉèÑù±¾ÈÝÁ¿Îªn£¬Ôò$\frac{36}{n}$=0.300£¬Ôòn=120£¬
¾»ÖØ´óÓÚ»òµÈÓÚ98¿Ë²¢ÇÒСÓÚ104¿ËµÄ²úÆ·µÄƵÂÊΪ£¨0.100+0.150+0.125£©¡Á2=0.75£¬
¹ÊÑù±¾Öо»ÖØ´óÓÚ»òµÈÓÚ98¿Ë²¢ÇÒСÓÚ104¿ËµÄ²úÆ·µÄ¸öÊýÊÇ120¡Á0.75=90£®¹Ê¢ÝÊÇÕæÃüÌ⣮
×ÛÉÏËùÊö£¬ÕæÃüÌâΪ£º¢Ú¢Ü¢Ý£¬
¹ÊÑ¡£ºB£®
µãÆÀ ±¾¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâϵͳ³éÑù¡¢ÆµÂÊ·Ö²¼Ö±·½Í¼¡¢ÖÚÊý¡¢ÖÐλÊý¡¢Æ½¾ùÊý¡¢ÏßÐԻع鷽³ÌµÈ֪ʶµãµÄºÏÀíÔËÓã®
| A£® | 2 | B£® | 2$\sqrt{3}$ | C£® | 2$\sqrt{3}$+2 | D£® | 2$\sqrt{3}$-2 |