题目内容
15.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤2}\\{y≥0}\end{array}\right.$,若z=ax+y的最大值为4,则a=2.分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值
解答
解:作出不等式组对应的平面区域如图:(阴影部分).
则A(2,0),B(1,1),
若z=ax+y过A时取得最大值为4,则2a=4,解得a=2,
此时,目标函数为z=2x+y,
即y=-2x+z,
平移直线y=-2x+z,当直线经过A(2,0)时,截距最大,此时z最大为4,满足条件,
若z=ax+y过B时取得最大值为4,则a+1=4,解得a=3,
此时,目标函数为z=3x+y,
即y=-3x+z,
平移直线y=-3x+z,当直线经过A(2,0)时,截距最大,此时z最大为6,不满足条件,
故a=2;
故答案为:2.
点评 本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.
练习册系列答案
相关题目
3.若函数f(x)是一次函数,且f(f(x))=4x-1,则f(x)=( )
| A. | 2x-$\frac{1}{3}$ | B. | 2x-1 | C. | -2x+1 | D. | 2x-$\frac{1}{3}$或-2x+1 |
4.若集合A={-$\frac{1}{3}$,$\frac{1}{2}$),B={x|mx=1}且B⊆A,则m的值为( )
| A. | 2 | B. | -3 | C. | 2或-3 | D. | 2或-3或0 |