ÌâÄ¿ÄÚÈÝ
17£®£¨1£©ÒÔÕâ15ÌìµÄPM2.5ÈÕ¾ùÖµÀ´¹À¼ÆÒ»ÄêµÄ¿ÕÆøÖÊÁ¿Çé¿ö£¬ÔòÒ»Ä꣨°´360Ìì¼ÆË㣩ÖÐÆ½¾ùÓжàÉÙÌìµÄ¿ÕÆøÖÊÁ¿´ïµ½Ò»¼¶»ò¶þ¼¶£®
£¨2£©´ÓÕâ15ÌìµÄÊý¾ÝÖÐÈÎÈ¡ÈýÌìÊý¾Ý£¬¼Ç¦Î±íʾ³éµ½PM2.5¼à²âÊý¾Ý³¬±êµÄÌìÊý£¬Çó¦ÎµÄ·Ö²¼ÁУ®
·ÖÎö £¨1£©Çó³ö³é²éµÄ15ÖÐ¿ÕÆøÖÊÁ¿ÎªÒ»¼¶»ò¶þ¼¶µÄÌìÊý£¬¸ù¾Ý±ÈÀýµÃ³ö½áÂÛ£»
£¨2£©ÀûÓ󬼸ºÎ·Ö²¼µÄ¸ÅÂʹ«Ê½¸ÅÂÊ£¬µÃ³ö·Ö²¼ÁУ®
½â´ð ½â£º£¨1£©Óɾ¥Ò¶Í¼¿ÉÖª³é²éµÄ15ÌìÖУ¬PM2.5ÈÕ¾ùֵСÓÚ»òµÈÓÚ75΢¿Ë/Á¢·½Ã×µÄÌìÊýΪ10Ì죬
¡àÒ»Ä꣨°´360Ìì¼ÆË㣩ÖÐ¿ÕÆøÖÊÁ¿´ïµ½Ò»¼¶»ò¶þ¼¶µÄÌìÊý´óԼΪ360¡Á$\frac{10}{15}$=240Ì죮
£¨2£©ÔÚ³éÈ¡µÄ15ÌìÖÐÓÐ5ÌìµÄPM2.5¼à²âÊý¾Ý³¬±ê£¬
¡à¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3
P£¨¦Î=0£©=$\frac{{C}_{10}^{3}}{{C}_{15}^{3}}$=$\frac{24}{91}$£¬P£¨¦Î=1£©=$\frac{{{C}_{5}^{1}C}_{10}^{2}}{{C}_{15}^{3}}$=$\frac{45}{91}$£¬P£¨¦Î=2£©=$\frac{{{C}_{5}^{2}C}_{10}^{1}}{{C}_{15}^{3}}$=$\frac{20}{91}$£¬P£¨¦Î=3£©=$\frac{{C}_{5}^{3}}{{C}_{15}^{3}}$=$\frac{2}{91}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
| ¦Î | 0 | 1 | 2 | 3 |
| P | $\frac{24}{91}$ | $\frac{45}{91}$ | $\frac{20}{91}$ | $\frac{2}{91}$ |
µãÆÀ ±¾Ì⿼²éÁ˾¥Ò¶Í¼£¬ÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁУ¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®ºÐÖÐÓÐ4¸ö°×Çò£¬5¸öºìÇò£¬´ÓÖÐÈÎÈ¡3¸öÇò£¬Ôò³é³ö2¸ö°×Çò1¸öºìÇòµÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
| A£® | $\frac{37}{42}$ | B£® | $\frac{17}{42}$ | C£® | $\frac{5}{14}$ | D£® | $\frac{17}{21}$ |
8£®·½³Ìy=ax+bºÍy=bx+a±íʾµÄÖ±Ïß¿ÉÄÜÊÇ£¨¡¡¡¡£©
| A£® | B£® | C£® | D£® |
2£®ÊýÁÐ0£¬$\frac{2}{3}$£¬$\frac{4}{5}$£¬$\frac{6}{7}$¡µÄÒ»¸öͨÏʽΪ£¨¡¡¡¡£©
| A£® | an=$\frac{2£¨n-1£©}{2n-1}$ | B£® | an=$\frac{n-1}{2n+1}$ | C£® | an=$\frac{n-1}{n+1}$ | D£® | an=$\frac{2n}{3n+1}$ |
6£®ÒÑÖªÁ½×éÏà¹ØÊý¾ÝÈç±í£¬ÆäÏßÐԻع鷽³ÌΪ$\stackrel{¡Ä}{y}$=x+$\frac{6}{5}$£¬Ôò±íÖÐȱʧµÄÊý¾Ým=11£®
| x | 5 | 7 | 9 | 11 | 13 |
| y | 6 | 8 | m | 12 | 14 |