题目内容
x,y∈R,若|x|+|y|+|x-1|+|y-1|≤2,则x+y的取值范围为 .
考点:绝对值不等式
专题:不等式的解法及应用
分析:根据绝对值的意义,|x|+|y|+|x-1|+|y-1|的最小值为2,再根据条件可得只有|x|+|y|+|x-1|+|y-1|=2,此时,0≤x≤1,0≤y≤1,从而求得x+y的范围.
解答:
解:根据绝对值的意义可得|x|+|x-1|表示数轴上的x对应点到0、1对应点的距离之和,其最小值为1;
|y|+|y-1|表示数轴上的y对应点到0、1对应点的距离之和,其最小值为1;
故|x|+|y|+|x-1|+|y-1|的最小值为2.
再根据|x|+|y|+|x-1|+|y-1|≤2,可得 只有|x|+|y|+|x-1|+|y-1|=2,
此时,0≤x≤1,0≤y≤1,∴0≤x+y≤2,
故答案为:[0,2].
|y|+|y-1|表示数轴上的y对应点到0、1对应点的距离之和,其最小值为1;
故|x|+|y|+|x-1|+|y-1|的最小值为2.
再根据|x|+|y|+|x-1|+|y-1|≤2,可得 只有|x|+|y|+|x-1|+|y-1|=2,
此时,0≤x≤1,0≤y≤1,∴0≤x+y≤2,
故答案为:[0,2].
点评:本题主要考查绝对值的意义,绝对值不等式的解法,属于中档题.
练习册系列答案
相关题目
若变量x,y满足约束条件
,则2x+y的最大值是( )
|
| A、2 | B、4 | C、7 | D、8 |
已知F为双曲线C:x2-my2=3m(m>0)的一个焦点,则点F到C的一条渐近线的距离为( )
A、
| ||
| B、3 | ||
C、
| ||
| D、3m |