题目内容
4.已知等差数列{an}的前n项和为Sn,且a2=5,S9=99.(Ⅰ)求an 及Sn;
(Ⅱ)若数列{$\frac{4}{{a}_{n}^{2}-1}$}的前n项和Tn,试求Tn并证明不等式Tn<1成立.
分析 (1)利用等差数列的通项公式及其前n项和公式即可得出;
(2)利用“裂项求和”可得Tn,即可证明.
解答 (1)解:设等差数列{an}的首项为a1,公差为d,∵a2=5,S9=99,
∴$99=\frac{{9×({{a_1}+{a_9}})}}{2}=9{a_5}$,得a5=11,
∴3d=a5-a2=6,
∴d=2,a1=3,
∴an=2n+1,
${S_n}=\frac{{n({{a_1}+{a_n}})}}{2}=\frac{{n({2n+4})}}{2}=n({n+2})$.
(Ⅱ)证明:${b_n}=\frac{4}{a_n^2-1}=\frac{4}{{4n({n+1})}}=\frac{1}{{n({n+1})}}=\frac{1}{n}-\frac{1}{n+1}$,
∴${T_n}={b_1}+{b_2}+…+{b_n}=({1-\frac{1}{2}})+({\frac{1}{2}-\frac{1}{3}})+…+({\frac{1}{n}-\frac{1}{n+1}})$=$1-\frac{1}{n+1}$,
∴Tn<1.
点评 本题考查了等差数列的通项公式及其前n项和公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
14.已知具有线性相关的两个变量x,y之间的一组数据如表:
且回归方程是$\widehat{y}$=0.95x+2.6,则t=( )
| x | 0 | 1 | 2 | 3 | 4 |
| y | 2.2 | 4.3 | 4.5 | 4.8 | t |
| A. | 6.7 | B. | 6.6 | C. | 6.5 | D. | 6.4 |