ÌâÄ¿ÄÚÈÝ
15£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x¡Ý1}\\{y¡Ý\frac{1}{2}x}\\{2x+y¡Ü10}\end{array}\right.$£¬ÏòÁ¿$\overrightarrow{a}$=£¨y-2x£¬m£©£¬$\overrightarrow{b}$=£¨1£¬-1£©£¬ÇÒ$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬ÔòmµÄ×îСֵΪ£¨¡¡¡¡£©| A£® | -6 | B£® | 6 | C£® | $\frac{3}{2}$ | D£® | -$\frac{3}{2}$ |
·ÖÎö ÓÉÏòÁ¿¹²ÏßµÄ×ø±ê±íʾµÃµ½m=2x-y£¬ÔÙÓÉÔ¼ÊøÌõ¼þ×÷³ö¿ÉÐÐÓò£¬ÊýÐνáºÏÇóµÃmµÄÖµ£®
½â´ð
½â£º¸ù¾ÝÌâÒ⣬ÏòÁ¿$\overrightarrow{a}$=£¨y-2x£¬m£©£¬$\overrightarrow{b}$=£¨1£¬-1£©£¬
Èô$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬Ôò-1¡Á£¨y-2x£©-1¡Ám=0£¬
¼´m=2x-y£®
¶øx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x¡Ý1}\\{y¡Ý\frac{1}{2}x}\\{2x+y¡Ü10}\end{array}\right.$£¬ÔòÆä¿ÉÐÐÓòÈçͼ£º
ÓÉm=2x-y£¬µÃy=2x-m£¬
¡àµ±Ö±Ïßy=2x-mÔÚyÖáÉϵĽؾà×î´óʱ£¬m×îС£¬
¼´µ±Ö±Ïßy=2x-m¹ýµãC£¨1£¬8£©Ê±£¬mµÄ×îСֵΪ2¡Á1-8=-6£»
¹ÊÑ¡£ºA£®
µãÆÀ ±¾Ì⿼²éÁ˼òµ¥µÄÏßÐԹ滮£¬Éæ¼°ÏòÁ¿¹²ÏßµÄ×ø±ê±íʾ£¬¹Ø¼üÊÇ·ÖÎöµÃµ½mÓëx¡¢yµÄ¹ØÏµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
18£®É躯Êý$f£¨x£©=\left\{\begin{array}{l}{e^x}-£¨a-1£©x£¬\;\;\;\;£¨x¡Ý0£©\\ a-\frac{1}{x}£¬\;\;\;\;\;\;\;\;\;\;\;\;\;\;£¨x£¼0£©\end{array}\right.$£¬Èô¶ÔÈÎÒâµÄx¡ÊR£¬f£¨x£©£¾xºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨-2£¬e£© | B£® | £¨-¡Þ£¬e£© | C£® | £¨1£¬+¡Þ£© | D£® | £¨-¡Þ£¬1£© |
20£®Èô¸´ÊýzÂú×ãz=£¨1+i£©£¨£¨$\frac{7}{2}$$+\frac{1}{2}$i£©£¨iΪÐéÊýµ¥Î»£©£¬ÔòzµÄģΪ£¨¡¡¡¡£©
| A£® | $\sqrt{5}$ | B£® | 5 | C£® | 2$\sqrt{6}$ | D£® | 25 |
7£®¼¯ºÏ{x¡ÊZ|£¨x-2£©£¨x2-3£©=0}ÓÃÁоٷ¨±íʾΪ£¨¡¡¡¡£©
| A£® | {2£¬$\sqrt{3}$£¬-$\sqrt{3}$} | B£® | {2£¬$\sqrt{3}$} | C£® | {2£¬-$\sqrt{3}$} | D£® | {2} |
4£®º¯Êýf£¨x£©=$\frac{{x}^{3}}{\sqrt{2-x}}$+lg£¨x+3£©µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
| A£® | £¨-3£¬2] | B£® | [-3£¬2] | C£® | £¨-3£¬2£© | D£® | £¨-¡Þ£¬-3£© |