题目内容

11.如图,在正四棱柱ABCD-A1B1C1D1中,E、F分别是AB1、BC1的中点,求证:EF∥A1C1

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能证明EF∥A1C1

解答 证明:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
设AB=2a,AA1=2b,
则A(2a,0,0),B1(2a,2a,2b),E(2a,a,b),B(2a,2a,0),C1(0,2a,2b),F(a,2a,b),
A1(2a,0,2b),C1(0,2a,2b),
$\overrightarrow{EF}$=(-a,a,0),$\overrightarrow{{A}_{1}{C}_{1}}$=(-2a,2a,0),
∴$\overrightarrow{{A}_{1}{C}_{1}}$=2$\overrightarrow{EF}$,
∴EF∥A1C1

点评 本题考查两直线平行的证明,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网