ÌâÄ¿ÄÚÈÝ
ijµçÊǪ́Äâ¾ÙÐÐÓÉÑ¡ÊÖ±¨Ãû²Î¼ÓµÄ±ÈÈüÀàÐ͵ÄÓéÀÖ½ÚÄ¿£¬Ñ¡ÊÖ½øÈëÕýÈüǰÐèͨ¹ýº£Ñ¡£¬²Î¼Óº£Ñ¡µÄÑ¡ÊÖ¿ÉÒԲμÓA¡¢B¡¢CÈý¸ö²âÊÔÏîÄ¿£¬Ö»Ðèͨ¹ýÒ»Ïî²âÊÔ¼´¿ÉÍ£Ö¹²âÊÔ£¬Í¨¹ýº£Ñ¡£®Èôͨ¹ýº£Ñ¡µÄÈËÊý³¬¹ýÔ¤¶¨ÕýÈü²ÎÈüÈËÊý£¬ÔòÓÅÏÈ¿¼ÂDzμӺ£Ñ¡²âÊÔ´ÎÊýÉÙµÄÑ¡ÊÖ½øÈëÕýÈü£®¼×Ñ¡ÊÖͨ¹ýÏîÄ¿A¡¢B¡¢C²âÊԵĸÅÂÊΪ·Ö±ðΪ
¡¢
¡¢
£¬ÇÒͨ¹ý¸÷´Î²âÊÔµÄʼþÏ໥¶ÀÁ¢£®
£¨1£©Èô¼×Ñ¡ÊÖÏȲâÊÔAÏîÄ¿£¬ÔÙ²âÊÔBÏîÄ¿£¬ºó²âÊÔCÏîÄ¿£¬ÇóËûͨ¹ýº£Ñ¡µÄ¸ÅÂÊ£»Èô¸Ä±ä²âÊÔ˳Ðò£¬¶ÔËûͨ¹ýº£Ñ¡µÄ¸ÅÂÊÊÇ·ñÓÐÓ°Ï죿˵Ã÷ÀíÓÉ£»
£¨2£©Èô¼×Ñ¡ÊÖ°´Ä³ÖÖ˳Ðò²Î¼Óº£Ñ¡²âÊÔ£¬µÚÒ»ÏîÄÜͨ¹ýµÄ¸ÅÂÊΪp1£¬µÚ¶þÏîÄÜͨ¹ýµÄ¸ÅÂÊΪp2£¬µÚÈýÏîÄÜͨ¹ýµÄ¸ÅÂÊΪp3£¬ÉèËûͨ¹ýº£Ñ¡Ê±²Î¼Ó²âÊԵĴÎÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁÐºÍÆÚÍû£¨ÓÃp1¡¢p¡¢p3±íʾ£©£»²¢ËµÃ÷¼×Ñ¡ÊÖ°´ÔõÑùµÄ²âÊÔ˳Ðò¸üÓÐÀûÓÚËû½øÈëÕýÈü£®
| 1 |
| 5 |
| 1 |
| 3 |
| 1 |
| 2 |
£¨1£©Èô¼×Ñ¡ÊÖÏȲâÊÔAÏîÄ¿£¬ÔÙ²âÊÔBÏîÄ¿£¬ºó²âÊÔCÏîÄ¿£¬ÇóËûͨ¹ýº£Ñ¡µÄ¸ÅÂÊ£»Èô¸Ä±ä²âÊÔ˳Ðò£¬¶ÔËûͨ¹ýº£Ñ¡µÄ¸ÅÂÊÊÇ·ñÓÐÓ°Ï죿˵Ã÷ÀíÓÉ£»
£¨2£©Èô¼×Ñ¡ÊÖ°´Ä³ÖÖ˳Ðò²Î¼Óº£Ñ¡²âÊÔ£¬µÚÒ»ÏîÄÜͨ¹ýµÄ¸ÅÂÊΪp1£¬µÚ¶þÏîÄÜͨ¹ýµÄ¸ÅÂÊΪp2£¬µÚÈýÏîÄÜͨ¹ýµÄ¸ÅÂÊΪp3£¬ÉèËûͨ¹ýº£Ñ¡Ê±²Î¼Ó²âÊԵĴÎÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁÐºÍÆÚÍû£¨ÓÃp1¡¢p¡¢p3±íʾ£©£»²¢ËµÃ÷¼×Ñ¡ÊÖ°´ÔõÑùµÄ²âÊÔ˳Ðò¸üÓÐÀûÓÚËû½øÈëÕýÈü£®
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûÓë·½²î
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨1£©ÏÈÇó³ö¼×Ñ¡ÊÖ²»ÄÜͨ¹ýº£Ñ¡µÄ¸ÅÂÊ£¬ÔÙÓɶÔÁ¢Ê¼þ¸ÅÂʼÆË㹫ʽÄÜÇó³ö¼×Ñ¡ÊÖÄÜͨ¹ýº£Ñ¡µÄ¸ÅÂÊ£®£¨2£©ÒÀÌâÒ⣬¦ÎµÄ¿ÉÄÜȡֵΪ1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁÐºÍÆÚÍû£®
½â´ð£º
½â£º£¨1£©ÒÀÌâÒ⣬¼×Ñ¡ÊÖ²»ÄÜͨ¹ýº£Ñ¡µÄ¸ÅÂÊΪ£º
£¨1-
£©£¨1-
£©£¨1-
£©=
£¬
¹Ê¼×Ñ¡ÊÖÄÜͨ¹ýº£Ñ¡µÄ¸ÅÂÊΪ£º
1-£¨1-
£©£¨1-
£©£¨1-
£©=
£®
Èô¸Ä±ä²âÊÔ˳Ðò¶ÔËûͨ¹ýº£Ñ¡µÄ¸ÅÂÊûÓÐÓ°Ï죬
ÒòΪÎÞÂÛ°´Ê²Ã´Ë³Ðò£¬Æä²»ÄÜͨ¹ýµÄ¸ÅÂʾùΪ£¨1-
£©£¨1-
£©£¨1-
£©=
£¬
¹ÊÎÞÂÛ°´Ê²Ã´Ë³Ðò£¬ÆäÄÜͨ¹ýº£Ñ¡µÄ¸ÅÂʶ¼ÊÇ
£®
£¨2£©ÒÀÌâÒ⣬¦ÎµÄ¿ÉÄÜȡֵΪ1£¬2£¬3£¬
P£¨¦Î=1£©=p1£¬
P£¨¦Î=2£©=£¨1-p1£©p2£¬
P£¨¦Î=3£©=£¨1-p1£©£¨1-p2£©¡Á1£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
E¦Î=p1+2£¨1-p1£©p2+3£¨1-p1£©£¨1-p2£©p3£¬
·Ö±ð¼ÆËãµ±¼×Ñ¡ÊÖ°´C¡úB¡úA£¬C¡úA¡úB£¬B¡úA¡úC£¬B¡úC¡úA£¬A¡úB¡úC£¬A¡úC¡úB
µÄ˳Ðò²Î¼Ó²âÊÔʱ£¬E¦ÎµÄÖµ¼¸Ê±¼×Ñ¡ÊÖ°´C¡úB¡úAµÄ˳Ðò²Î¼Ó²âÊÔʱ£¬E¦Î×îС£¬
ÒòΪ²Î¼Ó²âÊԵĴÎÊýÉÙµÄÑ¡ÊÖÓÅÏȽøÈëÕýÈü£¬¹Ê¸ÃÑ¡ÊÖ½«×Ô¼ºµÄÓÅÊÆÏîÄ¿·ÅÔÚÇ°Ãæ£¬
¼´°´C¡úB¡úAµÄ˳Ðò²Î¼Ó²âÊÔ¸üÓÐÀûÓÃÓÚ½øÈëÕýÈü£®
£¨1-
| 1 |
| 5 |
| 1 |
| 3 |
| 1 |
| 2 |
| 4 |
| 15 |
¹Ê¼×Ñ¡ÊÖÄÜͨ¹ýº£Ñ¡µÄ¸ÅÂÊΪ£º
1-£¨1-
| 1 |
| 5 |
| 1 |
| 3 |
| 1 |
| 2 |
| 11 |
| 15 |
Èô¸Ä±ä²âÊÔ˳Ðò¶ÔËûͨ¹ýº£Ñ¡µÄ¸ÅÂÊûÓÐÓ°Ï죬
ÒòΪÎÞÂÛ°´Ê²Ã´Ë³Ðò£¬Æä²»ÄÜͨ¹ýµÄ¸ÅÂʾùΪ£¨1-
| 1 |
| 5 |
| 1 |
| 3 |
| 1 |
| 2 |
| 4 |
| 15 |
¹ÊÎÞÂÛ°´Ê²Ã´Ë³Ðò£¬ÆäÄÜͨ¹ýº£Ñ¡µÄ¸ÅÂʶ¼ÊÇ
| 11 |
| 15 |
£¨2£©ÒÀÌâÒ⣬¦ÎµÄ¿ÉÄÜȡֵΪ1£¬2£¬3£¬
P£¨¦Î=1£©=p1£¬
P£¨¦Î=2£©=£¨1-p1£©p2£¬
P£¨¦Î=3£©=£¨1-p1£©£¨1-p2£©¡Á1£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º
| ¦Î | 1 | 2 | 3 |
| P | p1 | £¨1-p1£©p2 | £¨1-p1£©£¨1-p2£© |
·Ö±ð¼ÆËãµ±¼×Ñ¡ÊÖ°´C¡úB¡úA£¬C¡úA¡úB£¬B¡úA¡úC£¬B¡úC¡úA£¬A¡úB¡úC£¬A¡úC¡úB
µÄ˳Ðò²Î¼Ó²âÊÔʱ£¬E¦ÎµÄÖµ¼¸Ê±¼×Ñ¡ÊÖ°´C¡úB¡úAµÄ˳Ðò²Î¼Ó²âÊÔʱ£¬E¦Î×îС£¬
ÒòΪ²Î¼Ó²âÊԵĴÎÊýÉÙµÄÑ¡ÊÖÓÅÏȽøÈëÕýÈü£¬¹Ê¸ÃÑ¡ÊÖ½«×Ô¼ºµÄÓÅÊÆÏîÄ¿·ÅÔÚÇ°Ãæ£¬
¼´°´C¡úB¡úAµÄ˳Ðò²Î¼Ó²âÊÔ¸üÓÐÀûÓÃÓÚ½øÈëÕýÈü£®
µãÆÀ£º±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªÄ³Ò»Ëæ»ú±äÁ¿¦ÎµÄ¸ÅÂÊ·Ö²¼ÁÐÈçÏ£¬ÔòbµÄֵΪ£¨¡¡¡¡£©
| ¦Î | 4 | a | 9 |
| p | 0.5 | 0.1 | b |
| A¡¢0.6 | B¡¢0.5 |
| C¡¢0.4 | D¡¢0.1 |
ÒÑÖªf£¨x£©=lnx£¬Ôòf£¨x£©µÄµ¼ÊýΪf¡ä£¨x£©£¬Ôòf¡ä£¨1£©µÄֵΪ£¨¡¡¡¡£©
| A¡¢e | B¡¢0 | C¡¢1 | D¡¢ln2 |
ÏÂÁÐÖÜÆÚΪ
µÄº¯ÊýΪ£¨¡¡¡¡£©
| ¦Ð |
| 2 |
A¡¢y=sin£¨2x+
| ||
B¡¢y=2tan£¨x+
| ||
| C¡¢y=cos3x | ||
| D¡¢y=tan2x |
ÒÑÖªº¯Êýf£¨x£©=cosxsin2x£¬ÏÂÁнáÂÛÖв»ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A¡¢y=f£¨x£©µÄͼÏó¹ØÓÚ£¨¦Ð£¬0£©ÖÐÐÄ¶Ô³Æ | ||||
B¡¢y=f£¨x£©µÄͼÏó¹ØÓÚx=
| ||||
C¡¢f£¨x£©µÄ×î´óֵΪ
| ||||
| D¡¢f£¨x£©¼ÈÊÇÆæº¯Êý£¬ÓÖÊÇÖÜÆÚº¯Êý |