题目内容
复数z=
(i为虚数单位)的共轭复数为( )
| 1+2i |
| i |
| A、2-i | B、2+i |
| C、-2+i | D、-2-i |
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:利用复数的运算法则即可得出.
解答:
解:∵复数z=
=
=-i+2.
∴
=2+i.
故选:B.
| 1+2i |
| i |
| -i(1+2i) |
| -i•i |
∴
. |
| z |
故选:B.
点评:本题考查了复数的运算法则,属于基础题.
练习册系列答案
相关题目
已知a∈R,i是虚数单位,z=2+(2-a)i∈R,在复平面内,复数a-zi对应的点位于( )
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |
设变量z,y满足约束条件
,则目标函数z=
的最大值为( )
|
| y |
| x |
A、
| ||
| B、2 | ||
| C、7 | ||
| D、4 |
下面是一个2×2列联表:
则表中a,b的值分别为( )
| y1 | y2 | 合计 | |
| x1 | a | c | 73 |
| x2 | 22 | 25 | 47 |
| 合计 | b | 46 | 120 |
| A、94,72 |
| B、52,50 |
| C、52,74 |
| D、74,52 |
若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程是( )
| A、4x-y-3=0 |
| B、x+4y-5=0 |
| C、4x-y+3=0 |
| D、x+4y+3=0 |
集合A={α|α=
,n∈Z}∪{α|α=2nπ±
π,n∈Z},B={β|β=
,n∈Z}∪{β|β=nπ+
π,n∈Z},则A、B之间关系为( )
| nπ |
| 2 |
| 2 |
| 3 |
| 2nπ |
| 3 |
| 1 |
| 2 |
| A、B?A | B、A?B |
| C、B?A | D、A?B |