题目内容

15.四棱锥P-ABCD中,底面ABCD为矩形,$AB=2,BC=2\sqrt{2},E$为BC的中点,连接AE,BD,交点H,PH⊥平面ABCD,M为PD的中点.
(1)求证:平面MAE⊥平面PBD;
(2)设PE=1,求二面角M-AE-C的余弦值.

分析 (1)推导出BH⊥AE,PH⊥AE,从而AE⊥平面BPD,由此能证明平面MAE⊥平面PBD.
(2)由HB,HE,HP两两垂直,分别以HB,HE,HP所在直线为x,y,z轴建立空间直角坐标系,利用向量法能求出二面角M-AE-C的余弦值.

解答 证明:(1)在矩形ABCD中,∵△ABE~△DAB,
∴∠BAE=∠ADB,
∴∠BAE+∠ABD=$\frac{π}{2}$,∴BH⊥AE,
∵PH⊥平面ABCD,AE?平面ABCD,
∴PH⊥AE,又∵BH∩PH=H,
BH,PH?平面BPD,又∵AE?平面MAE,
∴平面MAE⊥平面PBD.
解:(2)由(1)知,HB,HE,HP两两垂直,
分别以HB,HE,HP所在直线为x,y,z轴建立如图所示空间直角坐标系,
则A(0,-$\frac{2\sqrt{6}}{3}$,0),E(0,$\frac{\sqrt{6}}{3}$,0),P(0,0,$\frac{\sqrt{3}}{3}$),C(-$\frac{2\sqrt{3}}{3}$,$\frac{2\sqrt{6}}{3}$,0),
D(-$\frac{4\sqrt{3}}{3}$,0,0),M(-$\frac{2\sqrt{3}}{3}$,0,$\frac{\sqrt{3}}{6}$),
$\overrightarrow{ME}$=($\frac{2\sqrt{3}}{3}$,$\frac{\sqrt{6}}{3}$,-$\frac{\sqrt{3}}{6}$),$\overrightarrow{MA}$=($\frac{2\sqrt{3}}{3}$,-$\frac{2\sqrt{6}}{3}$,-$\frac{\sqrt{3}}{6}$),
设MAE的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{ME}•\overrightarrow{n}=\frac{2\sqrt{3}}{3}x+\frac{\sqrt{6}}{3}y-\frac{\sqrt{3}}{6}z=0}\\{\overrightarrow{MA}•\overrightarrow{n}=\frac{2\sqrt{3}}{3}x-\frac{2\sqrt{6}}{3}y-\frac{\sqrt{3}}{6}z=0}\end{array}\right.$,
取x=1,得$\overrightarrow{n}$=(1,0,4),
平面AEC的法向量$\overrightarrow{m}$=(0,0,1),
设二面角M-AE-C的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{4}{\sqrt{17}}$=$\frac{4\sqrt{17}}{17}$,
∴二面角M-AE-C的余弦值为$\frac{4\sqrt{17}}{17}$.

点评 本题考查面面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网