题目内容

18.已知四面体ABCD各棱长都等于1,点E,F分别是AB,CD的中点,则异面直线AF与CE所成角的余弦值为(  )
A.-$\frac{2}{3}$B.$\frac{2}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

分析 由题意可得四面体A-BCD为正四面体,如图,连接BE,取BE的中点K,连接FK,则FK∥CE,故∠AFK即为所求的异面直线角或者其补角.利用等边三角形的性质、勾股定理、余弦定理即可得出.

解答 解:由题意可得四面体A-BCD为正四面体,如图,连接BE,取BE的中点K,连接FK,则FK∥CE,
故∠AFK即为所求的异面直线角或者其补角.
不妨设这个正四面体的棱长为2,在△AKF中,AF=$\sqrt{3}$=CE,KF=$\frac{1}{2}$CE=$\frac{\sqrt{3}}{2}$,KE=$\frac{1}{2}$BE=$\frac{\sqrt{3}}{2}$,
AK=$\sqrt{A{E}^{2}+K{E}^{2}}$=$\frac{\sqrt{7}}{2}$,
△AKF中,由余弦定理可得 cos∠AFK=$\frac{A{F}^{2}+F{K}^{2}-A{K}^{2}}{2AF•FK}$=$\frac{2}{3}$.
故选:B.

点评 本题考查了正四面题的性质等边三角形的性质、勾股定理、余弦定理、空间位置关系,考查了推理能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网