题目内容
函数y=loga(x-2)+1(a>0且a≠1)的图象恒过的一个定点是( )
| A、(3,0) |
| B、(3,1) |
| C、(2,1) |
| D、(2,2) |
考点:对数函数的单调性与特殊点
专题:函数的性质及应用
分析:令对数的真数等于1,求得x、y的值,可得函数图象经过的定点的坐标.
解答:
解:令x-2=1,求得 x=3,y=1,
故函数y=loga(x-2)+1(a>0且a≠1)的图象恒过的一个定点(3,1),
故选:B.
故函数y=loga(x-2)+1(a>0且a≠1)的图象恒过的一个定点(3,1),
故选:B.
点评:本题主要考查对数函数的单调性和特殊点,属于基础题.
练习册系列答案
相关题目
已知不重合的两条直线l,m和不重合的两个平面α,β,下列命题正确的是( )
| A、l∥m,l∥β,则m∥β |
| B、α∩β=m,l?α,则l∥β |
| C、α⊥β,l⊥α,则l∥β |
| D、l⊥m,m⊥β,l⊥α,则α⊥β |
已知函数f(x)=sin2ωx+
sinωxsin(ωx+
),(ω>0)的最小正周期为π,则f(x)在区间[0,
]上的值域为( )
| 3 |
| π |
| 2 |
| 2π |
| 3 |
A、[0,
| ||||
B、[-
| ||||
C、[-
| ||||
D、[-
|
设数列{an}是等比数列,满足an>0,q>1,且a3+a5=20,a2•a6=64,则a6=( )
| A、16 | B、32 | C、42 | D、48 |
| A、4 | B、9 | C、4或9 | D、6 |
下面是关于复数z=
的四个命题:
P1:|z|=2
P2:z2=2i
P3:z的共轭复数为1+i
P4:z的虚部为-1
其中真命题为( )
| 2 |
| -1+i |
P1:|z|=2
P2:z2=2i
P3:z的共轭复数为1+i
P4:z的虚部为-1
其中真命题为( )
| A、P2,P3 |
| B、P1,P2 |
| C、P2,P4 |
| D、P3,P4 |
在极坐标系中,圆ρ=2cosθ+2sinθ的圆心的极坐标是( )
A、(1,
| ||||
B、(1,
| ||||
C、(
| ||||
D、(
|