题目内容
8.己知数列{an}的前n项和Sn=$\frac{3{n}^{2}-n}{2}$(n∈N*)(1)求数列{an}的通项公式;
(2)令bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn.
分析 (1)根据公式an=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$计算an;
(2)使用裂项法求和.
解答 解:(1)当n=1时,a1=S1=1,
当n≥2时,an=Sn-Sn-1=$\frac{3{n}^{2}-n}{2}$-$\frac{3(n-1)^{2}-(n-1)}{2}$=3n-2,
经检验,当n=1时,上式仍成立,
∴an=3n-2.
(2)bn=$\frac{1}{(3n-2)(3n+1)}$=$\frac{1}{3}$($\frac{1}{3n-2}-\frac{1}{3n+1}$).
∴Tn=$\frac{1}{3}$(1-$\frac{1}{4}$+$\frac{1}{4}$-$\frac{1}{7}$+$\frac{1}{7}-\frac{1}{10}$+…+$\frac{1}{3n-2}-\frac{1}{3n+1}$)
=$\frac{1}{3}$(1-$\frac{1}{3n+1}$)
=$\frac{n}{3n+1}$.
点评 本题考查了数列通项公式的求法,裂项法数列求和,属于中档题.
练习册系列答案
相关题目
18.参数方程$\left\{\begin{array}{l}{x=cosα}\\{y=1+sinα}\end{array}\right.$(α为参数)化成普通方程为( )
| A. | x2+(y+1)2=1 | B. | x2+(y-1)2=1 | C. | (x-1)2+(y-1)2=1 | D. | x2+y2=1 |
3.设A、B是非空数集,定义A*B={x|x∈A∪B且x∉A∩B},已知集合A={x|y=2x-x2},B={y|y=2x,x>0},则A*B=( )
| A. | [0,1]∪(2,+∞) | B. | [0,1)∪(2,+∞) | C. | (-∞,1] | D. | [0,2] |
20.6张同排连号的电影票,分给3名教师与3名学生,若要求师生相间而坐,则不同的分法有( )
| A. | $A_3^3$•$A_4^3$ | B. | $A_3^3$•$A_3^3$ | C. | $A_4^3$•$A_4^3$ | D. | 2$A_3^3$•$A_3^3$ |
17.y=$\root{3}{x}$•$\sqrt{x}$的导数y′为( )
| A. | $\frac{5}{6}$x | B. | $\frac{5}{6}\root{6}{x}$ | C. | $\frac{5}{{6\root{6}{x}}}$ | D. | $\frac{{5\root{6}{x}}}{6}$ |