题目内容

已知函数f(x)=ex+ax2-e2x.
(1)若曲线y=f(x)在点(2,f(2))处的切线平行于x轴,求函数f(x)的单调区间;
(2)若x>0时,总有f(x)>-e2x,求实数a的取值范围.
考点:利用导数研究曲线上某点切线方程,导数在最大值、最小值问题中的应用
专题:导数的综合应用
分析:(1)求出原函数的导函数,得到f′(2),由f′(2)=0求得a的值,把a的值代入导函数,求出导函数的零点,由零点对函数的定义域分段,根据不同区间段内导函数的符号判断原函数的单调性;
(2)把f(x)的解析式代入f(x)>-e2x,分离a后构造辅助函数g(x)=-
ex
x2
,由导数求g(x)的最值,则实数a的取值范围可求.
解答: 解:(1)由f(x)=ex+ax2-e2x,得:
f′(x)=ex+2ax-e2,即y=f(x)在点(2,f(2))处的切线斜率k=4a=0,
此时f(x)=ex-e2x,f′(x)=ex-e2
由f′(x)=0,得x=2.
当x∈(-∞,2)时,f′(x)<0,f(x)在(-∞,2)上单调递减;
当x∈(2,+∞)时,f′(x)>0,f(x)在(2,+∞)上单调递增.
(2)由f(x)>-e2x得:a>-
ex
x2

设g(x)=-
ex
x2
,x>0.
g(x)=
ex(2-x)
x2

∴当0<x<2时,g′(x)>0,g(x)在(0,2)上单调递增;
当x>2时,g′(x)<0,g(x)在(2,+∞)上单调递减.
g(x)≤g(2)=-
e2
4

∴a的取值范围为(-
e2
4
,+∞
).
点评:本题考查利用导数研究曲线上某点处的切线方程,考查了函数的单调性与导函数符号见得关系,训练了利用导数求函数的最值,体现了数学转化思想方法,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网