题目内容

|z-2i|=2,u=iz-2,则|u-2i|的取值范围是
 
考点:复数求模
专题:数系的扩充和复数
分析:利用复数的运算法则、几何意义、圆的复数形式的方程即可得出.
解答: 解:∵|z-2i|=2,u=iz-2,
∴-iu=-i•iz+2i,
化为z=-iu-2i,
∴|-iu-2i-2i|=2,
∴|u-(-4)|=2.
∵|2i-(-4)|=
22+(-4)2
=2
5

∴|u-2i|∈[2
5
-2,2
5
+2]

∴|u-2i|的取值范围是:[2
5
-2,2
5
+2]

故答案为:[2
5
-2,2
5
+2]
点评:本题考查了复数的运算法则、几何意义、圆的复数形式的方程,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网