题目内容

10.长方体ABCD-A1B1C1D1中,AB=AA1=2,AD=1,则异面直线BC1与CD1所成角的余弦值为(  )
A.$\frac{{\sqrt{10}}}{5}$B.$\frac{1}{5}$C.$\frac{{\sqrt{10}}}{10}$D.$\frac{1}{2}$

分析 以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线BC1与CD1所成角的余弦值.

解答 解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
由已知得B(1,2,0),C1(0,2,2),C(0,2,0),D1(0,0,2),
$\overrightarrow{B{C}_{1}}$=(-1,0,2),$\overrightarrow{C{D}_{1}}$=(0,-2,2),
设异面直线BC1与CD1所成角为θ,
则cosθ=$\frac{|\overrightarrow{B{C}_{1}}•\overrightarrow{C{D}_{1}}|}{|\overrightarrow{B{C}_{1}}|•|\overrightarrow{C{D}_{1}}|}$=$\frac{4}{\sqrt{5}•\sqrt{8}}$=$\frac{\sqrt{10}}{5}$.
∴异面直线BC1与CD1所成角的余弦值为$\frac{\sqrt{10}}{5}$.
故选:A.

点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网