题目内容
1.在等比数列{an}中,$\underset{lim}{n→∞}$(a1+a2+…+an)=$\frac{1}{15}$,则a1的取值范围是$(0,\frac{2}{15})$,且a1$≠\frac{1}{15}$.分析 由等比数列的性质可得:$\underset{lim}{n→∞}$(a1+a2+…+an)=$\frac{1}{15}$=$\frac{{a}_{1}}{1-q}$,-1<q<1,q≠0.化简解出即可得出.
解答 解:由等比数列的性质可得:$\underset{lim}{n→∞}$(a1+a2+…+an)=$\frac{1}{15}$=$\frac{{a}_{1}}{1-q}$,-1<q<1,q≠0.
∴a1=$\frac{1-q}{15}$∈$(0,\frac{2}{15})$,且a1$≠\frac{1}{15}$.
∴a1的取值范围是∈$(0,\frac{2}{15})$,且a1$≠\frac{1}{15}$.
故答案为:$(0,\frac{2}{15})$,且a1$≠\frac{1}{15}$.
点评 本题考查了等比数列的性质及其前n项和公式、方程的解法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
11.考生甲填报某高校专业意向,打算从5个专业中挑选3个,分别作为第一、第二、第三志愿,则不同的填法有( )
| A. | 10种 | B. | 60种 | C. | 125种 | D. | 243种 |
2.从集合A={-1,$\frac{1}{2}$,2}中随机选取一个数记为k,从集合B={$\frac{1}{2}$,$\frac{3}{2}$,2}中随机选取一个数记为a,则ak>1的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{7}{9}$ | D. | $\frac{5}{9}$ |
9.(1+2x)3(1-x)4展开式中x项的系数为( )
| A. | 10 | B. | -10 | C. | 2 | D. | -2 |
6.下列关于空间的直线和平面的叙述,正确的是( )
| A. | 平行于同一平面的两直线平行 | |
| B. | 垂直于同一平面的两平面平行 | |
| C. | 如果两条互相垂直的直线都分别平行于两个不同的平面,那么这两个平面平行 | |
| D. | 如果一个平面内一条直线垂直于另一个平面的一条垂线,那么这两个平面垂直 |