题目内容
7.已知集合A={1,2},则A的真子集的个数为( )| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
分析 根据集合的元素,求出集合的真子集的个数即可.
解答 解:集合A={1,2},有2个元素,
故A的真子集的个数是22-1=3个,
故选:B.
点评 本题考查子集与真子集,对于集合M的子集问题,一般来说,若M中有n个元素,则集合M的真子集共有2n-1个,是基础题.
练习册系列答案
相关题目
17.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点和虚轴上的一个端点分别为F,A,点P为双曲线C左支上一点,若△APF周长的最小值为6b,则双曲线C的离心率为( )
| A. | $\frac{\sqrt{56}}{8}$ | B. | $\frac{\sqrt{85}}{7}$ | C. | $\frac{\sqrt{85}}{6}$ | D. | $\frac{\sqrt{13}}{3}$ |
18.在△ABC中,角A,B,C所对的边分别为a,b,c,S表示△ABC的面积,若S=$\frac{1}{4}({{b^2}+{c^2}-{a^2}})$,则∠A=( )
| A. | 90° | B. | 60° | C. | 45° | D. | 30° |
15.已知命题p:函数f(x)=|x+a|在(-∞,-1)上是单调函数,命题q:函数$f(x)=\frac{{{x^2}+a}}{x}(a>0)$在(2,+∞)上递增,若p且q为真命题,则实数a的取值范围是( )
| A. | (0,1] | B. | (0,2] | C. | [1,2] | D. | [1,3] |
12.某学校为了制定治理学校门口上学、放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从其中随机抽取的50份调查问卷,得到了如下的列联表:
已知在抽取的50份调查问卷中随机抽取一份,抽到不同意限定区域停车问卷的概率为$\frac{2}{5}$.
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为是否同意限定区域停车与家长的性别有关?请说明理由;
(Ⅲ)学校计划在同意限定区域停车的家长中,按照性别分层抽样选取9人,在上学、放学期间在学校门口维持秩序.已知在抽取的男性家长中,恰有3位日常开车接送孩子.现从抽取的男性家长中再选取2人召开座谈会,求这两人中至少有一人日常开车接送孩子的概率.
附临界值表及参考公式:
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
| 同意限定区域停车 | 不同意限定区域停车 | 合计 | |
| 男生 | 5 | ||
| 女生 | 10 | ||
| 合计 | 50 |
(Ⅰ)请将上面的列联表补充完整;
(Ⅱ)是否有99.5%的把握认为是否同意限定区域停车与家长的性别有关?请说明理由;
(Ⅲ)学校计划在同意限定区域停车的家长中,按照性别分层抽样选取9人,在上学、放学期间在学校门口维持秩序.已知在抽取的男性家长中,恰有3位日常开车接送孩子.现从抽取的男性家长中再选取2人召开座谈会,求这两人中至少有一人日常开车接送孩子的概率.
附临界值表及参考公式:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |