题目内容
6.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:①f(x1+x2)=f(x1)f(x2);
②f(x1x2)=f(x1)+f(x2);
③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$.
当f(x)=ex时,上述结论中正确结论的序号是①③.
分析 由f(x)=ex,利用指数函数的性质,知f(x1+x2)=f(x1)f(x2),f(x1x2)≠f(x1)+f(x2);由f(x)=ex是增函数,知③正确.
解答 解:∵f(x)=ex时,f(x)定义域中任意的x1,x2(x1≠x2),
∴f(x1+x2)=ex1+x2=ex1•ex2=f(x1)f(x2),故①正确;
f(x1x2)=ex1x2=≠ex1+ex2=f(x1)+f(x2),故②不正确;
∵f(x)=ex是增函数,
∴③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$,故③正确.
故答案为:①③
点评 本题考查命题的真假判断,解题时要认真审题,仔细解答,注意指数函数的性质的灵活运用.
练习册系列答案
相关题目
1.下列函数中,定义域为R的是( )
| A. | y=$\sqrt{x}$ | B. | y=lg|x| | C. | y=x3+3 | D. | y=$\frac{1}{x}$ |
11.函数y=loga(2x-3)+$\frac{\sqrt{2}}{2}$(a>0且a≠1)的图象恒过定点P,且P在幂函数f(x)的图象上,则f(4)=( )
| A. | 2 | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | 16 |
18.已知动圆M过定点B(-4,0),且和定圆(x-4)2+y2=16相外切,则动圆圆心M的轨迹方程为( )
| A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x>0) | B. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1(x<0) | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1 | D. | $\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1 |
15.设a=log50.5,b=log20.3,c=log0.32则( )
| A. | b<a<c | B. | b<c<a | C. | c<b<a | D. | a>b>c |