题目内容
在Rt△ABC中,∠ACB=30°,∠B=90°,D为AC中点,E为BD的中点,AE的延长线交BC于F,将△ABD沿BD折起,二面角A-BD-C大小记为θ.
(Ⅰ)求证:面AEF⊥面BCD;
(Ⅱ)θ为何值时,AB⊥CD.

(Ⅰ)求证:面AEF⊥面BCD;
(Ⅱ)θ为何值时,AB⊥CD.
见解析
(Ⅰ)证明:在Rt△ABC中,∠C=30°,D为AC的中点,则△ABD是等边三角形
又E是BD的中点,∵BD⊥AE,BD⊥EF,折起后,AE∩EF=E,∴BD⊥面AEF
∵BD
面BCD,∴面AEF⊥面BCD
(Ⅱ)解:过A作AP⊥面BCD于P,则P在FE的延长线上,设BP与CD相交于Q,
令AB=1,则△ABD是边长为1的等边三角形,若AB⊥CD,则BQ⊥CD

由于∠AEF=θ就是二面角A-BD-C的平面角,

又E是BD的中点,∵BD⊥AE,BD⊥EF,折起后,AE∩EF=E,∴BD⊥面AEF
∵BD
(Ⅱ)解:过A作AP⊥面BCD于P,则P在FE的延长线上,设BP与CD相交于Q,
令AB=1,则△ABD是边长为1的等边三角形,若AB⊥CD,则BQ⊥CD
由于∠AEF=θ就是二面角A-BD-C的平面角,
练习册系列答案
相关题目