题目内容

函数y=f(x)满足:对一切x∈R都有f(x-1)=f(x+1);当x∈[0,1]时,f(x)=
x+2,(0≤x≤0.5)
log4(x+15),(0.5<x≤1)
,则f(2011)=(  )
A、2
2
3
-3
B、2-
3
C、2
D、2+
3
考点:分段函数的应用
专题:函数的性质及应用
分析:利用已知条件求出函数的周期,通过分段函数由里及外逐步求解即可.
解答: 解:函数y=f(x)满足:对一切x∈R都有f(x-1)=f(x+1);可得函数的周期为2,
当x∈[0,1]时,f(x)=
x+2,(0≤x≤0.5)
log4(x+15),(0.5<x≤1)

f(2011)=f(1)=log416=2.
故选:C.
点评:本题考查分段函数以及函数的周期,函数值的求法,考查计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网