题目内容
已知 cos(x-
)=
,x∈(
,π).
(I)求sinx的值;
(Ⅱ)求sin(2x+
)的值.
| π |
| 4 |
| ||
| 10 |
| π |
| 2 |
(I)求sinx的值;
(Ⅱ)求sin(2x+
| π |
| 3 |
(I)∵cos(x-
)=
,x∈(
,π).
∴
(sinx+cosx)=
;
?sinx+conx=
?cosx=
-sinx;
代入sin2x+cos2x=1解得sinx=
,cosx=-
.
(Ⅱ)∵sinx=
,cosx=-
.
∴sin2x=2sinxcosx=-
;
cos2x=2cos2x-1=-
.
∴sin(2x+
)=sin2xcos
+cos2xsin
=-
×
+(-
)×
=-
.
| π |
| 4 |
| ||
| 10 |
| π |
| 2 |
∴
| ||
| 2 |
| ||
| 10 |
?sinx+conx=
| 1 |
| 5 |
| 1 |
| 5 |
代入sin2x+cos2x=1解得sinx=
| 4 |
| 5 |
| 3 |
| 5 |
(Ⅱ)∵sinx=
| 4 |
| 5 |
| 3 |
| 5 |
∴sin2x=2sinxcosx=-
| 12 |
| 25 |
cos2x=2cos2x-1=-
| 7 |
| 25 |
∴sin(2x+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=-
| 12 |
| 25 |
| 1 |
| 2 |
| 7 |
| 25 |
| ||
| 2 |
| ( ) |
| ( ) |
=-
12+7
| ||
| 50 |
练习册系列答案
相关题目
已知cos(π+x)=
,x∈(π,2π),则sinx=( )
| 3 |
| 5 |
A、-
| ||
B、-
| ||
C、
| ||
D、
|