题目内容
(1)计算:2log32-log3
+10g
-5 log59
(2)解不等式:log2(2x+1)+2>log2(3-x)
| 32 |
| 9 |
| 1 |
| 3 |
| 1 |
| 8 |
(2)解不等式:log2(2x+1)+2>log2(3-x)
考点:指、对数不等式的解法,对数的运算性质
专题:函数的性质及应用
分析:(1)由指数和对数的运算法则计算可得;
(2)原不等式可化为log2(8x+4)>log2(3-x),进而可得
,解不等式组可得.
(2)原不等式可化为log2(8x+4)>log2(3-x),进而可得
|
解答:
解:(1)2log32-log3
+10g
-5 log59
=2log32-log332+log39+10g38-9
=2log32-5log32+2+30g32-9
=27g32-7
(2)原不等式可化为log2(2x+1)+log222>log2(3-x)
整理可得log2(8x+4)>log2(3-x),
∴
,解得
<x<3
| 32 |
| 9 |
| 1 |
| 3 |
| 1 |
| 8 |
=2log32-log332+log39+10g38-9
=2log32-5log32+2+30g32-9
=27g32-7
(2)原不等式可化为log2(2x+1)+log222>log2(3-x)
整理可得log2(8x+4)>log2(3-x),
∴
|
| 1 |
| 9 |
点评:本题考查指数函数和对数函数的性质,属基础题.
练习册系列答案
相关题目