题目内容

9.已知向量$\overrightarrow m=(sin2x,cos2x),\overrightarrow n=(cos\frac{π}{4},sin\frac{π}{4})$,函数f(x)=$\sqrt{2}$$\overrightarrow{m}$•$\overrightarrow{n}$+2.
(1)求函数f(x)的最小正周期;
(2)将函数y=f(x)的图象向右平移$\frac{π}{24}$个单位,再将所得图象上各点的横坐标伸长为原来的2倍,纵坐标不变,得到函数g(x)的图象,求函数g(x)在[-π,π]上零点.

分析 (1)利用两个向量的数量积公式求得f(x)的解析式,再利用正弦函数的周期性得出结论.
(2)利用函数y=Asin(ωx+φ)的图象变换规律求得g(x)的解析式,再利用正弦函数的零点求得函数g(x)在[-π,π]上零点.

解答 解:(1)∵$f(x)=\sqrt{2}\overrightarrow m•\overrightarrow n=\sqrt{2}(sin2xcos\frac{π}{4}+cos2xsin\frac{π}{4})=\sqrt{2}sin(2x+\frac{π}{4})$,
∴f(x)的最小正周期$T=\frac{2π}{2}=π$.
(2)由(Ⅰ)知f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),将函数f(x)的图象向右平移$\frac{π}{24}$个单位,
得到图象的解析式为y=$\sqrt{2}$sin[2(x-$\frac{π}{24}$)+$\frac{π}{4}$]=$\sqrt{2}$sin(2x+$\frac{π}{6}$),
在将所得图象上各点的横坐标伸长为原来的2倍,得到g(x)=$\sqrt{2}$sin(x+$\frac{π}{6}$),
由x+$\frac{π}{6}$=kπ,得x=kπ-$\frac{π}{6}$,k∈Z.
故当x∈[-π,π]时,函数g(x)的零点为-$\frac{π}{6}$和$\frac{5π}{6}$.

点评 本题主要考查两个向量的数量积公式,正弦函数的周期性,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的零点,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网