题目内容

16.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3+\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2$\sqrt{5}$sinθ.
(I)求圆C的直角坐标方程;
(II)设圆C与直线l交于点A、B,若点P的坐标为(3,$\sqrt{5}$),求|PA|+|PB|的值.

分析 (I)由圆的极坐标方程ρ=2$\sqrt{5}$sinθ,可得ρ2=2$\sqrt{5}$ρsinθ,即可求圆C的直角坐标方程;
(II)设A、B点所对应的参数分别为t1,t2,把直线l的参数方程代入圆C的方程,利用参数的几何意义,即可求|PA|+|PB|的值.

解答 解:(I)由圆的极坐标方程ρ=2$\sqrt{5}$sinθ,可得ρ2=2$\sqrt{5}$ρsinθ,?
∴x2+y2=2$\sqrt{5}$y,
∴圆C的直角坐标方程为,x2+y2-2$\sqrt{5}$y=0(5分)
(II)设A、B点所对应的参数分别为t1,t2,把直线l的参数方程代入圆C的方程
则t1,t2是下面方程的根
(3+$\frac{\sqrt{2}}{2}$t)2+($\sqrt{5}$+$\frac{\sqrt{2}}{2}$t)2-2$\sqrt{5}$($\sqrt{5}$+$\frac{\sqrt{2}}{2}$t)=0
整理得,t2+3$\sqrt{2}$t+4=0
所以,t1+t2=-3$\sqrt{2}$,t1t2=4(t1,t2同号)
∵直线l过P(3,$\sqrt{5}$)
∴根据t的几何意义可知|PA|=|t1|,|PB|=|t2|
∴|PA|+|PB|=|t1|+|t2|=|t1+t2|=3$\sqrt{2}$(10分)

点评 本题考查极坐标方程转化为直角坐标方程,考查参数方程的运用,考查参数的几何意义,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网