题目内容
9.计算:$\frac{1{2}^{0}-{3}^{2}×{6}^{-1}×{2}^{2}}{-{3}^{-2}}$×5-1=9.分析 $\frac{1{2}^{0}-{3}^{2}×{6}^{-1}×{2}^{2}}{-{3}^{-2}}$×5-1=$\frac{1-9×\frac{1}{6}×4}{-\frac{1}{9}}$×$\frac{1}{5}$=$\frac{1-6}{-\frac{1}{9}}$×$\frac{1}{5}$=9,即可求得$\frac{1{2}^{0}-{3}^{2}×{6}^{-1}×{2}^{2}}{-{3}^{-2}}$×5-1.
解答 解:$\frac{1{2}^{0}-{3}^{2}×{6}^{-1}×{2}^{2}}{-{3}^{-2}}$×5-1=$\frac{1-9×\frac{1}{6}×4}{-\frac{1}{9}}$×$\frac{1}{5}$=$\frac{1-6}{-\frac{1}{9}}$×$\frac{1}{5}$=(-5)×(-9)×$\frac{1}{5}$=9,
∴$\frac{1{2}^{0}-{3}^{2}×{6}^{-1}×{2}^{2}}{-{3}^{-2}}$×5-1=9,
故答案为:9.
点评 本题考查有理数指数幂的化简求值,考查有理数幂的运算,考查计算能力,属于基础题.
练习册系列答案
相关题目
4.已知数列{an}中a1=1,an=$\frac{1}{2}$an-1+1(n≥2),则an=( )
| A. | 2-($\frac{1}{2}$)n-1 | B. | ($\frac{1}{2}$)n-1-2 | C. | 2-2n-1 | D. | 2n-1 |