题目内容
13.| A. | BC与平面A1BE内某直线平行 | B. | CD∥平面A1BE | ||
| C. | BC与平面A1BE内某直线垂直 | D. | BC⊥A1B |
分析 构造平面BCE,平面BFE,则可判断A,B,C,使用假设法判断D.
解答
解:连结CE,当平面A1BE与平面BCE重合时,BC?平面A1BE,
∴平面A1BE内必存在与BC平行和垂直的直线,故A,C可能成立;
在平面BCD内过B作CD的平行线BF,使得BF=CD,
连结EF,则当平面A1BE与平面BEF重合时,BF?平面A1BE,
故平面A1BE内存在与BF平行的直线,即平面A1BE内存在与CD平行的直线,
∴CD∥平面A1BE,故C可能成立.
若BC⊥A1B,又A1B⊥A1E,则A1B为直线A1E和BC的公垂线,
∴A1B<CE,
设A1B=1,则经计算可得CE=$\frac{\sqrt{3}}{2}$,
与A1B<CE矛盾,故D不可能成立.
故选D.
点评 本题考查了空间线面位置关系的判断,属于中档题.
练习册系列答案
相关题目
8.$\overrightarrow a=(sinα,1)$,$\overrightarrow b=(-2,4cosα)$,若$\overrightarrow a$与$\overrightarrow b$共线,则tanα=( )
| A. | 1 | B. | -1 | C. | ±1 | D. | $\sqrt{2}$ |
18.已知$\overrightarrow{a}$=(sinα,cosα),$\overrightarrow{b}$=($\sqrt{3}$,1),且$\overrightarrow{a}⊥\overrightarrow{b}$,那么sin(α+$\frac{π}{3}$)=( )
| A. | -$\frac{1}{2}$或$\frac{1}{2}$ | B. | -$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
5.已知0<α<$\frac{π}{2}$<β<π,又sinα=$\frac{3}{5}$,cos(α+β)=-$\frac{4}{5}$,则sinβ=( )
| A. | 0 | B. | $\frac{24}{25}$ | C. | $\frac{16}{25}$ | D. | $\frac{24}{25}$或$\frac{16}{25}$ |