题目内容
若数据x1,x2,…,xn的平均数为
,方差为s2,则3x1+5,3x2+5,…,3xn+5的平均数和标准差分别为( )
. |
| x |
A、
| ||||
B、3
| ||||
C、3
| ||||
D、3
|
考点:极差、方差与标准差,众数、中位数、平均数
专题:概率与统计
分析:利用平均数和标准差的性质求解.
解答:
解:∵数据x1,x2,…,xn的平均数为
,方差为s2,
∴3x1+5,3x2+5,…,3xn+5的平均数为3
+5,标准差为3s.
故选:C.
. |
| x |
∴3x1+5,3x2+5,…,3xn+5的平均数为3
. |
| x |
故选:C.
点评:本题考查标准差和平均数的求法,解题时要认真审题,是基础题.
练习册系列答案
相关题目
化简
+
(π<θ<
)( )
|
|
| 3π |
| 2 |
| A、1 | ||
| B、-1 | ||
| C、sinθ | ||
D、-
|
已知实数a在区间(0,2)上等可能随机取值,则函数f(x)=2x3-3ax2在区间(0,1)上有极小值的概率是( )
A、
| ||
B、
| ||
C、
| ||
D、
|
设点F为锐角△ABC的“费马点”,即F是在△ABC内满足∠AFB=∠BFC=∠CFA=120°的点.若|
|=3,
|=4,|
|=5,且实数x,y满足
=x
+y
,则
=( )
| FA |
| FB |
| FC |
| AF |
| AB |
| AC |
| x |
| y |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),且f(x)不恒为零,则f(x)是( )
| A、奇函数 |
| B、偶函数 |
| C、既是奇函数又是偶函数 |
| D、非奇非偶函数 |
已知样本点(xi,yi)(i=1,2,…,n)的散点图呈线性正相关,且回归直线的斜率估计值的绝对值为1.23,样本点的中心为(4,5),则回归直线方程为( )
A、
| ||
B、
| ||
C、
| ||
D、
|