题目内容
15.已知抛物线y2=8x的准线与双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{16}$=1相交于A,B两点,点F为抛物线的焦点,△ABF为直角三角形,则双曲线的离心率为( )| A. | 3 | B. | $\sqrt{2}+1$ | C. | 2 | D. | $\sqrt{3}$ |
分析 先求解准线方程,代入双曲线方程求得y,根据双曲线的对称性可知△FAB为等腰直角三角形,进而可求得A或B的纵坐标为4,进而求得a,利用a,b和c的关系求得c,则双曲线的离心率可得.
解答
解:依题意知抛物线的准线x=-2,代入双曲线方程得
y=±$\frac{4}{a}$•$\sqrt{4-{a}^{2}}$,不妨设A(-2,$\frac{4}{a\sqrt{4-{a}^{2}}}$).
∵△FAB是等腰直角三角形,∴$\frac{4}{a\sqrt{4-{a}^{2}}}$=p=4,求得a=$\sqrt{2}$,
∴双曲线的离心率为e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}+16}}{a}$=$\frac{\sqrt{18}}{\sqrt{2}}$=3,
故选:A.
点评 本题主要考查了双曲线的简单性质.解题的关键是通过双曲线的对称性质判断出△FAB为等腰直角三角形,属于中档题.
练习册系列答案
相关题目
5.
如图,网格纸上小正方形的边长是1,在其上用粗线画出了某空间几何体的三视图,则这个空间几何体的体积为( )
| A. | π | B. | 2π | C. | 3π | D. | 4π |
6.已知f(x+y)=f(x)+f(y)且f(1)=2,则f(1)+f(2)+…+f(n)不能等于( )
| A. | f(1)+2f(1)+…+nf(1) | B. | f($\frac{n(n+1)}{2}$) | C. | n(n+1) | D. | n(n+1)f(1) |
3.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )

| A. | $\frac{8}{3}$+2π | B. | 4+4$\sqrt{2}$+3π | C. | 8+4$\sqrt{2}$+3π | D. | 10+4$\sqrt{2}$+2π |
7.若a=30.3,b=logπ3,c=log0.3e,则( )
| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | b>c>a |