题目内容

7.已知角α的终边经过一点P(1,4$\sqrt{3}$),cos(α-β)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$.
(1)求tanα+tan2α的值;(2)求β.

分析 (1)由条件利用任意角的三角函数的定义求出sinα 和cosα、tanα 的值,进而可求tan2α,从而得解.
(2)先求范围α-β∈(0,$\frac{π}{2}$),利用同角三角函数基本关系式可求sin(α-β),利用两角差的余弦函数公式可求cosβ=cos[(α-β)-α]的值,即可得解β.

解答 解:(1)∵角α的终边过点P(1,4$\sqrt{3}$),故有 r=|OP|=7,sinα=$\frac{y}{r}$=$\frac{4\sqrt{3}}{7}$,cosα=$\frac{x}{r}$=$\frac{1}{7}$,
tanα=4$\sqrt{3}$,tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=-$\frac{8\sqrt{3}}{47}$.
∴tanα+tan2α=4$\sqrt{3}$-$\frac{8\sqrt{3}}{47}$=$\frac{180\sqrt{3}}{47}$.
(2)∵cos(α-β)=$\frac{13}{14}$,且0<β<α<$\frac{π}{2}$.
∴α-β∈(0,$\frac{π}{2}$),sin(α-β)=$\frac{3\sqrt{3}}{14}$,
∴cosβ=cos[(α-β)-α]=cos(α-β)cosα+sin(α-β)sinα=$\frac{13}{14}$×$\frac{1}{7}$+$\frac{3\sqrt{3}}{14}$×$\frac{4\sqrt{3}}{7}$=$\frac{121}{98}$.
∴β=arccos$\frac{121}{98}$.

点评 本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,两角差的余弦公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网