题目内容

18.直角坐标系xOy的原点和极坐标系OX的极点重合,x轴正半轴与极轴重合,单位长度相同.在直角坐标系下,曲线C的参数方程为 $\left\{\begin{array}{l}x=2mcosϕ\\ y=nsinϕ\end{array}\right.$(m,n为常数,φ为参数).
(1)当m=n=1时,在极坐标系下,此时曲线C与射线$θ=\frac{π}{4}$和射线$θ=-\frac{π}{4}$分别交于A,B两点,求△AOB的面积;
(2)当m=1,n=2时,又在直角坐标系下,直线l的参数方程为$\left\{\begin{array}{l}x=t-\sqrt{3}\\ y=\sqrt{3}t+1\end{array}\right.$(t为参数),求此时曲线C与直线l的交点坐标.

分析 (1)先消去参数方程中的参数得普通方程,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换将直角坐标方程化成极坐标方程,通过极坐标方程求出三角形的边长后求面积即可.
(2)将l的参数方程代入曲线C的普通方程,得t的值,再代入l的参数方程,得曲线C与直线l的交点坐标.

解答 解:(1)当m=n=1时,曲线C在直角坐标系下的普通方程为$\frac{x^2}{4}+{y^2}=1$,
将其化为极坐标方程为$\frac{{{ρ^2}{{cos}^2}θ}}{4}+\frac{{{ρ^2}{{sin}^2}θ}}{1}=1$,…(2分)
分别代入$θ=\frac{π}{4}$和$θ=-\frac{π}{4}$,得${|{OA}|^2}={|{OB}|^2}=\frac{8}{5}$,
因为$∠AOB=\frac{π}{2}$,故△AOB的面积$S=\frac{1}{2}|{OA}|•|{OB}|=\frac{4}{5}$…(5分)
(2)当m=1,n=2时,曲线C的普通方程x2+y2=4,将l的参数方程代入曲线C的普通方程,得4t2=0,即t=0,代入l的参数方程,得x=-$\sqrt{3}$,y=1,所以曲线C与直线l的交点坐标为(-$\sqrt{3}$,1)…(10分)

点评 本题考查坐标系与参数方程,对参数方程与极坐标方程之间的灵活转化是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网