题目内容
(文科)已知圆O的半径为r,A是圆所在平面内一定点,P是圆上任意一点,线段AP的垂直平分线l与直线OP相交于点Q,当P在圆上运动时,点Q的轨迹可能是下列图形中的 (填写所有可能图形的序号)
1.双曲线;2.点;3.圆;4.直线;5.椭圆;6.双曲线的一支;7.抛物线.
1.双曲线;2.点;3.圆;4.直线;5.椭圆;6.双曲线的一支;7.抛物线.
考点:轨迹方程
专题:圆锥曲线的定义、性质与方程
分析:由题意可得,点A可能在圆的外部,可能在圆的内部(但不和点O重合)、可能和点O重合、也可能在圆上,在这四种情况下,分别求出点Q的轨迹方程,即可得到答案.
解答:
解:(1)当点A为⊙O外一定点,P为⊙O上一动点,
线段AP的垂直平分线交直线OP于点Q,
则QA=QP,则QA-Q0=QP-QO=OP=r.
即动点Q到两定点A、O的距离差为定值r<OA,
根据双曲线的定义,可得点Q的轨迹是:以O,A为焦点,r为实轴长的双曲线的一支.
故6满足条件.
(2)当A为⊙O内一定点,且A不与点O重合,∵P为⊙O上一动点,
线段AP的垂直平分线交直线OP于点Q,则QA=QP,
QA=QP=OP-OQ=r-OQ,∴QA+OQ=r>OA,故Q的轨迹是:以O,A为焦点,r为长轴的椭圆,
故5满足条件.
(3)当点A和原点O重合时,线段AP的垂直平分线交直线OP于点Q,则QA=QP,
点Q是线段OP的中点,故有OQ=
OP=
,
故Q的轨迹是:以O为圆心,以
为半径的圆,故3满足条件.
(4)当点A在圆上时,线段AP的垂直平分线交直线OP于点Q,则Q和点O重合,
故Q的轨迹是点O,为一个点,故2满足条件.
故答案为:2、3、5、6.
线段AP的垂直平分线交直线OP于点Q,
则QA=QP,则QA-Q0=QP-QO=OP=r.
即动点Q到两定点A、O的距离差为定值r<OA,
根据双曲线的定义,可得点Q的轨迹是:以O,A为焦点,r为实轴长的双曲线的一支.
故6满足条件.
(2)当A为⊙O内一定点,且A不与点O重合,∵P为⊙O上一动点,
线段AP的垂直平分线交直线OP于点Q,则QA=QP,
QA=QP=OP-OQ=r-OQ,∴QA+OQ=r>OA,故Q的轨迹是:以O,A为焦点,r为长轴的椭圆,
故5满足条件.
(3)当点A和原点O重合时,线段AP的垂直平分线交直线OP于点Q,则QA=QP,
点Q是线段OP的中点,故有OQ=
| 1 |
| 2 |
| r |
| 2 |
故Q的轨迹是:以O为圆心,以
| r |
| 2 |
(4)当点A在圆上时,线段AP的垂直平分线交直线OP于点Q,则Q和点O重合,
故Q的轨迹是点O,为一个点,故2满足条件.
故答案为:2、3、5、6.
点评:本题主要考查圆、椭圆、双曲线的定义,轨迹方程的求法,体现了分类讨论的数学思想,是中档题.
练习册系列答案
相关题目
某中学拟安排6名实习老师到高一年级的3个班实习,每班2人,则甲在一班、乙不在一班的不同分配方案共有( )
| A、12种 | B、24种 |
| C、36种 | D、48种 |
将函数y=sin(x-
)的图象上所有点的横坐标缩短为原来的
(纵坐标不变),再将所得函数的图象向左平移
个单位,则最终所得函数图象对应的解析式为( )
| π |
| 6 |
| 1 |
| 2 |
| π |
| 3 |
A、y=cos
| ||
| B、y=sin2x | ||
C、y=sin
| ||
| D、y=cos2x |
在△ABC中,角A<B是sinA<sinB的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分又不必要条件 |
a的值由如图程序框图算出,则二项式(
-
)9展开式的常数项为( )

| x |
| a |
| x |
A、T6=-75×C
| ||
B、T4=73×C
| ||
C、T4=-73×C
| ||
D、T5=74×C
|