题目内容

1.函数f(x)=sin(ωx+φ),(|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(x)的单调递增区间为(  )
A.(-1+4kπ,1+4kπ),k∈ZB.(-3+8kπ,1+8kπ),k∈Z
C.(-1+4k,1+4k),k∈ZD.(-3+8k,1+8k),k∈Z

分析 由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用正弦函数的单调性,求得f(x)的增区间.

解答 解:根据函数f(x)=sin(ωx+φ),(|φ|<$\frac{π}{2}$)的部分图象,可得$\frac{1}{4}•\frac{2π}{ω}$=3-1=2,
求得ω=$\frac{π}{4}$,再根据五点法作图可得$\frac{π}{4}$•1+φ=$\frac{π}{2}$,∴φ=$\frac{π}{4}$,∴f(x)=sin($\frac{π}{4}$x+$\frac{π}{4}$).
令2kπ-$\frac{π}{2}$≤$\frac{π}{4}$x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得8k-3≤x≤8k+1,
故函数的增区间为[-3+8k,1+8k],k∈Z,
故选:D.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值,正弦函数的单调性,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网